会议中ASR的分层Pitman-Yor语言模型

Songfang Huang, S. Renals
{"title":"会议中ASR的分层Pitman-Yor语言模型","authors":"Songfang Huang, S. Renals","doi":"10.1109/ASRU.2007.4430096","DOIUrl":null,"url":null,"abstract":"In this paper we investigate the application of a hierarchical Bayesian language model (LM) based on the Pitman-Yor process for automatic speech recognition (ASR) of multiparty meetings. The hierarchical Pitman-Yor language model (HPY-LM) provides a Bayesian interpretation of LM smoothing. An approximation to the HPYLM recovers the exact formulation of the interpolated Kneser-Ney smoothing method in n-gram models. This paper focuses on the application and scalability of HPYLM on a practical large vocabulary ASR system. Experimental results on NIST RT06s evaluation meeting data verify that HPYLM is a competitive and promising language modeling technique, which consistently performs better than interpolated Kneser-Ney and modified Kneser-Ney n-gram LMs in terms of both perplexity and word error rate.","PeriodicalId":371729,"journal":{"name":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"Hierarchical Pitman-Yor language models for ASR in meetings\",\"authors\":\"Songfang Huang, S. Renals\",\"doi\":\"10.1109/ASRU.2007.4430096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we investigate the application of a hierarchical Bayesian language model (LM) based on the Pitman-Yor process for automatic speech recognition (ASR) of multiparty meetings. The hierarchical Pitman-Yor language model (HPY-LM) provides a Bayesian interpretation of LM smoothing. An approximation to the HPYLM recovers the exact formulation of the interpolated Kneser-Ney smoothing method in n-gram models. This paper focuses on the application and scalability of HPYLM on a practical large vocabulary ASR system. Experimental results on NIST RT06s evaluation meeting data verify that HPYLM is a competitive and promising language modeling technique, which consistently performs better than interpolated Kneser-Ney and modified Kneser-Ney n-gram LMs in terms of both perplexity and word error rate.\",\"PeriodicalId\":371729,\"journal\":{\"name\":\"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2007.4430096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2007.4430096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

本文研究了基于Pitman-Yor过程的层次贝叶斯语言模型(LM)在多人会议自动语音识别(ASR)中的应用。分层Pitman-Yor语言模型(HPY-LM)提供了对LM平滑的贝叶斯解释。对HPYLM的近似恢复了n-gram模型中插值Kneser-Ney平滑方法的精确公式。本文主要研究了HPYLM在一个实际的大词汇量ASR系统中的应用和可扩展性。在NIST RT06s评估会议数据上的实验结果验证了HPYLM是一种有竞争力和前景的语言建模技术,在困惑度和单词错误率方面,HPYLM始终优于内插的Kneser-Ney和修改的Kneser-Ney n-gram LMs。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical Pitman-Yor language models for ASR in meetings
In this paper we investigate the application of a hierarchical Bayesian language model (LM) based on the Pitman-Yor process for automatic speech recognition (ASR) of multiparty meetings. The hierarchical Pitman-Yor language model (HPY-LM) provides a Bayesian interpretation of LM smoothing. An approximation to the HPYLM recovers the exact formulation of the interpolated Kneser-Ney smoothing method in n-gram models. This paper focuses on the application and scalability of HPYLM on a practical large vocabulary ASR system. Experimental results on NIST RT06s evaluation meeting data verify that HPYLM is a competitive and promising language modeling technique, which consistently performs better than interpolated Kneser-Ney and modified Kneser-Ney n-gram LMs in terms of both perplexity and word error rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信