基于GBDTs的双相情感障碍分类多模态层次查全

Xiaofen Xing, Bolun Cai, Yinhu Zhao, Shuzhen Li, Zhiwei He, Weiquan Fan
{"title":"基于GBDTs的双相情感障碍分类多模态层次查全","authors":"Xiaofen Xing, Bolun Cai, Yinhu Zhao, Shuzhen Li, Zhiwei He, Weiquan Fan","doi":"10.1145/3266302.3266311","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel hierarchical recall model fusing multiple modality (including audio, video and text) for bipolar disorder classification, where patients with different mania level are recalled layer-by-layer. To address the complex distribution on the challenge data, the proposed framework utilizes multi-model, multi-modality and multi-layer to perform domain adaptation for each patient and hard sample mining for special patients. The experimental results show that our framework achieves competitive performance with Unweighed Average Recall (UAR) of 57.41% on the test set, and 86.77% on the development set.","PeriodicalId":123523,"journal":{"name":"Proceedings of the 2018 on Audio/Visual Emotion Challenge and Workshop","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Multi-modality Hierarchical Recall based on GBDTs for Bipolar Disorder Classification\",\"authors\":\"Xiaofen Xing, Bolun Cai, Yinhu Zhao, Shuzhen Li, Zhiwei He, Weiquan Fan\",\"doi\":\"10.1145/3266302.3266311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel hierarchical recall model fusing multiple modality (including audio, video and text) for bipolar disorder classification, where patients with different mania level are recalled layer-by-layer. To address the complex distribution on the challenge data, the proposed framework utilizes multi-model, multi-modality and multi-layer to perform domain adaptation for each patient and hard sample mining for special patients. The experimental results show that our framework achieves competitive performance with Unweighed Average Recall (UAR) of 57.41% on the test set, and 86.77% on the development set.\",\"PeriodicalId\":123523,\"journal\":{\"name\":\"Proceedings of the 2018 on Audio/Visual Emotion Challenge and Workshop\",\"volume\":\"112 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 on Audio/Visual Emotion Challenge and Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3266302.3266311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 on Audio/Visual Emotion Challenge and Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3266302.3266311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

本文提出了一种融合多模态(包括音频、视频和文本)的双相情感障碍分类分层回忆模型,对不同躁狂程度的患者进行逐层回忆。针对挑战数据分布复杂的问题,该框架采用多模型、多模态、多层次的方法对每个患者进行领域自适应,对特殊患者进行硬样本挖掘。实验结果表明,我们的框架在测试集上达到了57.41%的未加权平均召回率(UAR),在开发集上达到了86.77%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-modality Hierarchical Recall based on GBDTs for Bipolar Disorder Classification
In this paper, we propose a novel hierarchical recall model fusing multiple modality (including audio, video and text) for bipolar disorder classification, where patients with different mania level are recalled layer-by-layer. To address the complex distribution on the challenge data, the proposed framework utilizes multi-model, multi-modality and multi-layer to perform domain adaptation for each patient and hard sample mining for special patients. The experimental results show that our framework achieves competitive performance with Unweighed Average Recall (UAR) of 57.41% on the test set, and 86.77% on the development set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信