{"title":"基于GBDTs的双相情感障碍分类多模态层次查全","authors":"Xiaofen Xing, Bolun Cai, Yinhu Zhao, Shuzhen Li, Zhiwei He, Weiquan Fan","doi":"10.1145/3266302.3266311","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel hierarchical recall model fusing multiple modality (including audio, video and text) for bipolar disorder classification, where patients with different mania level are recalled layer-by-layer. To address the complex distribution on the challenge data, the proposed framework utilizes multi-model, multi-modality and multi-layer to perform domain adaptation for each patient and hard sample mining for special patients. The experimental results show that our framework achieves competitive performance with Unweighed Average Recall (UAR) of 57.41% on the test set, and 86.77% on the development set.","PeriodicalId":123523,"journal":{"name":"Proceedings of the 2018 on Audio/Visual Emotion Challenge and Workshop","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Multi-modality Hierarchical Recall based on GBDTs for Bipolar Disorder Classification\",\"authors\":\"Xiaofen Xing, Bolun Cai, Yinhu Zhao, Shuzhen Li, Zhiwei He, Weiquan Fan\",\"doi\":\"10.1145/3266302.3266311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel hierarchical recall model fusing multiple modality (including audio, video and text) for bipolar disorder classification, where patients with different mania level are recalled layer-by-layer. To address the complex distribution on the challenge data, the proposed framework utilizes multi-model, multi-modality and multi-layer to perform domain adaptation for each patient and hard sample mining for special patients. The experimental results show that our framework achieves competitive performance with Unweighed Average Recall (UAR) of 57.41% on the test set, and 86.77% on the development set.\",\"PeriodicalId\":123523,\"journal\":{\"name\":\"Proceedings of the 2018 on Audio/Visual Emotion Challenge and Workshop\",\"volume\":\"112 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 on Audio/Visual Emotion Challenge and Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3266302.3266311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 on Audio/Visual Emotion Challenge and Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3266302.3266311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-modality Hierarchical Recall based on GBDTs for Bipolar Disorder Classification
In this paper, we propose a novel hierarchical recall model fusing multiple modality (including audio, video and text) for bipolar disorder classification, where patients with different mania level are recalled layer-by-layer. To address the complex distribution on the challenge data, the proposed framework utilizes multi-model, multi-modality and multi-layer to perform domain adaptation for each patient and hard sample mining for special patients. The experimental results show that our framework achieves competitive performance with Unweighed Average Recall (UAR) of 57.41% on the test set, and 86.77% on the development set.