具有未知BRDF的三维表面的有效光度立体技术

Li Shen, Takashi Machida, H. Takemura
{"title":"具有未知BRDF的三维表面的有效光度立体技术","authors":"Li Shen, Takashi Machida, H. Takemura","doi":"10.1109/3DIM.2005.35","DOIUrl":null,"url":null,"abstract":"The present paper focuses on efficient inverse rendering using a photometric stereo technique for realistic surfaces. The technique primarily assumes the Lambertian reflection model only. For non-Lambertian surfaces, application of the technique to real surfaces in order to estimate 3D shape and spatially varying reflectance from sparse images remains difficult. In the present paper, we propose a new photometric stereo technique by which to efficiently recover a full surface model, starting from a small set of photographs. The proposed technique allows diffuse albedo to vary arbitrarily over surfaces while non-diffuse characteristics remain constant for a material. Specifically, the basic approach is to first recover the specular reflectance parameters of the surfaces by a novel optimization procedure. These parameters are then used to estimate the diffuse reflectance and surface normal for each point. As a result, a lighting-independent model of the geometry and reflectance properties of the surface is established using the proposed method, which can be used to re-render the images under novel lighting via traditional rendering methods.","PeriodicalId":170883,"journal":{"name":"Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Efficient photometric stereo technique for three-dimensional surfaces with unknown BRDF\",\"authors\":\"Li Shen, Takashi Machida, H. Takemura\",\"doi\":\"10.1109/3DIM.2005.35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present paper focuses on efficient inverse rendering using a photometric stereo technique for realistic surfaces. The technique primarily assumes the Lambertian reflection model only. For non-Lambertian surfaces, application of the technique to real surfaces in order to estimate 3D shape and spatially varying reflectance from sparse images remains difficult. In the present paper, we propose a new photometric stereo technique by which to efficiently recover a full surface model, starting from a small set of photographs. The proposed technique allows diffuse albedo to vary arbitrarily over surfaces while non-diffuse characteristics remain constant for a material. Specifically, the basic approach is to first recover the specular reflectance parameters of the surfaces by a novel optimization procedure. These parameters are then used to estimate the diffuse reflectance and surface normal for each point. As a result, a lighting-independent model of the geometry and reflectance properties of the surface is established using the proposed method, which can be used to re-render the images under novel lighting via traditional rendering methods.\",\"PeriodicalId\":170883,\"journal\":{\"name\":\"Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3DIM.2005.35\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DIM.2005.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本论文的重点是利用光度计立体技术对现实表面进行有效的反向渲染。该技术主要只采用朗伯反射模型。对于非朗伯曲面,将该技术应用于真实曲面以从稀疏图像中估计三维形状和空间变化反射率仍然是困难的。在本文中,我们提出了一种新的光度立体技术,通过该技术可以从一小组照片开始有效地恢复完整的表面模型。所提出的技术允许漫射反照率在表面上任意变化,而非漫射特性对材料保持恒定。具体来说,基本方法是首先通过一种新的优化程序恢复表面的镜面反射参数。然后使用这些参数来估计每个点的漫反射和表面法线。利用该方法建立了一个与光照无关的曲面几何和反射率模型,该模型可用于在新的光照条件下使用传统的渲染方法对图像进行重新渲染。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient photometric stereo technique for three-dimensional surfaces with unknown BRDF
The present paper focuses on efficient inverse rendering using a photometric stereo technique for realistic surfaces. The technique primarily assumes the Lambertian reflection model only. For non-Lambertian surfaces, application of the technique to real surfaces in order to estimate 3D shape and spatially varying reflectance from sparse images remains difficult. In the present paper, we propose a new photometric stereo technique by which to efficiently recover a full surface model, starting from a small set of photographs. The proposed technique allows diffuse albedo to vary arbitrarily over surfaces while non-diffuse characteristics remain constant for a material. Specifically, the basic approach is to first recover the specular reflectance parameters of the surfaces by a novel optimization procedure. These parameters are then used to estimate the diffuse reflectance and surface normal for each point. As a result, a lighting-independent model of the geometry and reflectance properties of the surface is established using the proposed method, which can be used to re-render the images under novel lighting via traditional rendering methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信