多传感器自适应频率选择浅水跟踪的顺序蒙特卡罗方法

J. Zhang, A. Papandreou-Suppappola
{"title":"多传感器自适应频率选择浅水跟踪的顺序蒙特卡罗方法","authors":"J. Zhang, A. Papandreou-Suppappola","doi":"10.1109/CAMSAP.2007.4498017","DOIUrl":null,"url":null,"abstract":"We propose a matched-field processing framework for tracking problems in shallow water environments where the conventional plane-wave assumptions do not hold. Multiple passive acoustic sensors are employed to collect observation data, and sequential Monte Carlo techniques are used for tracking due to the high nonlinearity in the dynamic state formulation. In order to enhance the tracking performance, we design a frequency selection algorithm which adaptively chooses the optimal observation frequency for the sensors at each time instant. The improved tracking performance is demonstrated using simulations.","PeriodicalId":220687,"journal":{"name":"2007 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sequential Monte Carlo Methods for Shallow Water Tracking Using Multiple Sensors with Adaptive Frequency Selection\",\"authors\":\"J. Zhang, A. Papandreou-Suppappola\",\"doi\":\"10.1109/CAMSAP.2007.4498017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a matched-field processing framework for tracking problems in shallow water environments where the conventional plane-wave assumptions do not hold. Multiple passive acoustic sensors are employed to collect observation data, and sequential Monte Carlo techniques are used for tracking due to the high nonlinearity in the dynamic state formulation. In order to enhance the tracking performance, we design a frequency selection algorithm which adaptively chooses the optimal observation frequency for the sensors at each time instant. The improved tracking performance is demonstrated using simulations.\",\"PeriodicalId\":220687,\"journal\":{\"name\":\"2007 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAMSAP.2007.4498017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMSAP.2007.4498017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一种匹配场处理框架,用于在传统平面波假设不成立的浅水环境中跟踪问题。采用多被动声传感器采集观测数据,由于动态公式的高度非线性,采用时序蒙特卡罗技术进行跟踪。为了提高跟踪性能,设计了一种频率选择算法,在每个时刻自适应地选择传感器的最优观测频率。通过仿真验证了改进后的跟踪性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sequential Monte Carlo Methods for Shallow Water Tracking Using Multiple Sensors with Adaptive Frequency Selection
We propose a matched-field processing framework for tracking problems in shallow water environments where the conventional plane-wave assumptions do not hold. Multiple passive acoustic sensors are employed to collect observation data, and sequential Monte Carlo techniques are used for tracking due to the high nonlinearity in the dynamic state formulation. In order to enhance the tracking performance, we design a frequency selection algorithm which adaptively chooses the optimal observation frequency for the sensors at each time instant. The improved tracking performance is demonstrated using simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信