基于改进遗传算法的机器人主动嗅觉

Zhi-Biao Shi, Jiang-bo Sun
{"title":"基于改进遗传算法的机器人主动嗅觉","authors":"Zhi-Biao Shi, Jiang-bo Sun","doi":"10.1109/CICN.2013.136","DOIUrl":null,"url":null,"abstract":"Robots active olfaction based on Genetic algorithm, in order to make the robot car plume in a specific environment, can be faster and more accurate to find the odor source, through the genetic algorithm crossover and mutation operator improved, the formation of a new improved genetic algorithm. In the five assumptions, will improve the genetic algorithm is applied to the robot active olfaction study, simulation results show that the genetic algorithm with the traditional comparison, the robot car can be faster and more accurate in finding the odor plume source.","PeriodicalId":415274,"journal":{"name":"2013 5th International Conference on Computational Intelligence and Communication Networks","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robots Active Olfaction Based on Improved Genetic Algorithm\",\"authors\":\"Zhi-Biao Shi, Jiang-bo Sun\",\"doi\":\"10.1109/CICN.2013.136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Robots active olfaction based on Genetic algorithm, in order to make the robot car plume in a specific environment, can be faster and more accurate to find the odor source, through the genetic algorithm crossover and mutation operator improved, the formation of a new improved genetic algorithm. In the five assumptions, will improve the genetic algorithm is applied to the robot active olfaction study, simulation results show that the genetic algorithm with the traditional comparison, the robot car can be faster and more accurate in finding the odor plume source.\",\"PeriodicalId\":415274,\"journal\":{\"name\":\"2013 5th International Conference on Computational Intelligence and Communication Networks\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 5th International Conference on Computational Intelligence and Communication Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CICN.2013.136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 5th International Conference on Computational Intelligence and Communication Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICN.2013.136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于遗传算法的机器人主动嗅探,为了使机器人在特定环境下,能够更快、更准确地找到气味源,通过对遗传算法的交叉和变异算子进行改进,形成了一种新的改进遗传算法。在这五个假设中,将改进的遗传算法应用于机器人主动嗅觉的研究,仿真结果表明,将遗传算法与传统的汽车机器人进行比较,可以更快、更准确地找到气味羽流源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robots Active Olfaction Based on Improved Genetic Algorithm
Robots active olfaction based on Genetic algorithm, in order to make the robot car plume in a specific environment, can be faster and more accurate to find the odor source, through the genetic algorithm crossover and mutation operator improved, the formation of a new improved genetic algorithm. In the five assumptions, will improve the genetic algorithm is applied to the robot active olfaction study, simulation results show that the genetic algorithm with the traditional comparison, the robot car can be faster and more accurate in finding the odor plume source.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信