基于人类操作技能的机器人飞艇任务轨迹跟踪控制

Jun Luo, Shaorong Xie, Jinjun Rao, Zhenbang Gong
{"title":"基于人类操作技能的机器人飞艇任务轨迹跟踪控制","authors":"Jun Luo, Shaorong Xie, Jinjun Rao, Zhenbang Gong","doi":"10.1109/CIRA.2005.1554332","DOIUrl":null,"url":null,"abstract":"A yawing controller based on artificial neural networks (ANN) and human operator's skill is presented for robotic airship mission path tracking. Firstly, consideration of the path tracking errors from the point of view of operators is presented. Then, a data acquisition system is designed to collect flight data under manual control. Thirdly, The processed flight data are used to train and validate a multilayer feedforward ANN offline. Lastly, the trained ANN is reconstructed in the flight control system for yawing control. The experimental results indicate that this solution is valid and the ANN controller is robust even with wind disturbance.","PeriodicalId":162553,"journal":{"name":"2005 International Symposium on Computational Intelligence in Robotics and Automation","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robotic airship mission path tracking control based on human operator's skill\",\"authors\":\"Jun Luo, Shaorong Xie, Jinjun Rao, Zhenbang Gong\",\"doi\":\"10.1109/CIRA.2005.1554332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A yawing controller based on artificial neural networks (ANN) and human operator's skill is presented for robotic airship mission path tracking. Firstly, consideration of the path tracking errors from the point of view of operators is presented. Then, a data acquisition system is designed to collect flight data under manual control. Thirdly, The processed flight data are used to train and validate a multilayer feedforward ANN offline. Lastly, the trained ANN is reconstructed in the flight control system for yawing control. The experimental results indicate that this solution is valid and the ANN controller is robust even with wind disturbance.\",\"PeriodicalId\":162553,\"journal\":{\"name\":\"2005 International Symposium on Computational Intelligence in Robotics and Automation\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 International Symposium on Computational Intelligence in Robotics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIRA.2005.1554332\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 International Symposium on Computational Intelligence in Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIRA.2005.1554332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对机器人飞艇任务路径跟踪问题,提出了一种基于人工神经网络和人工操作技能的偏航控制器。首先,从算子的角度考虑了路径跟踪误差。然后,设计了一个数据采集系统,用于采集人工控制下的飞行数据。第三,将处理后的飞行数据用于多层前馈神经网络的离线训练和验证。最后,将训练好的人工神经网络重构到飞行控制系统中进行偏航控制。实验结果表明,该方法是有效的,即使在风的干扰下,人工神经网络控制器也具有较强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robotic airship mission path tracking control based on human operator's skill
A yawing controller based on artificial neural networks (ANN) and human operator's skill is presented for robotic airship mission path tracking. Firstly, consideration of the path tracking errors from the point of view of operators is presented. Then, a data acquisition system is designed to collect flight data under manual control. Thirdly, The processed flight data are used to train and validate a multilayer feedforward ANN offline. Lastly, the trained ANN is reconstructed in the flight control system for yawing control. The experimental results indicate that this solution is valid and the ANN controller is robust even with wind disturbance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信