SQL到NoSQL转换的关联感知技术

Jen-Chun Hsu, Ching-Hsien Hsu, Shih-Chang Chen, Yeh-Ching Chung
{"title":"SQL到NoSQL转换的关联感知技术","authors":"Jen-Chun Hsu, Ching-Hsien Hsu, Shih-Chang Chen, Yeh-Ching Chung","doi":"10.1109/U-MEDIA.2014.27","DOIUrl":null,"url":null,"abstract":"For better efficiency of parallel and distributed computing, Apache Hadoop distributes the imported data randomly on data nodes. This mechanism provides some advantages for general data analysis. With the same concept Apache Sqoop separates each table into four parts and randomly distributes them on data nodes. However, there is still a database performance concern with this data placement mechanism. This paper proposes a Correlation Aware method on Sqoop (CA_Sqoop) to improve the data placement. By gathering related data as closer as it could be to reduce the data transformation cost on the network and improve the performance in terms of database usage. The CA_Sqoop also considers the table correlation and size for better data locality and query efficiency. Simulation results show that data locality of CA_Sqoop is two times better than that of original Apache Sqoop.","PeriodicalId":174849,"journal":{"name":"2014 7th International Conference on Ubi-Media Computing and Workshops","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Correlation Aware Technique for SQL to NoSQL Transformation\",\"authors\":\"Jen-Chun Hsu, Ching-Hsien Hsu, Shih-Chang Chen, Yeh-Ching Chung\",\"doi\":\"10.1109/U-MEDIA.2014.27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For better efficiency of parallel and distributed computing, Apache Hadoop distributes the imported data randomly on data nodes. This mechanism provides some advantages for general data analysis. With the same concept Apache Sqoop separates each table into four parts and randomly distributes them on data nodes. However, there is still a database performance concern with this data placement mechanism. This paper proposes a Correlation Aware method on Sqoop (CA_Sqoop) to improve the data placement. By gathering related data as closer as it could be to reduce the data transformation cost on the network and improve the performance in terms of database usage. The CA_Sqoop also considers the table correlation and size for better data locality and query efficiency. Simulation results show that data locality of CA_Sqoop is two times better than that of original Apache Sqoop.\",\"PeriodicalId\":174849,\"journal\":{\"name\":\"2014 7th International Conference on Ubi-Media Computing and Workshops\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 7th International Conference on Ubi-Media Computing and Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/U-MEDIA.2014.27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 7th International Conference on Ubi-Media Computing and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/U-MEDIA.2014.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

为了提高并行和分布式计算的效率,Apache Hadoop将导入的数据随机分布在数据节点上。这种机制为一般数据分析提供了一些优势。使用相同的概念,Apache Sqoop将每个表分成四个部分,并将它们随机分布在数据节点上。但是,这种数据放置机制仍然存在数据库性能问题。本文提出了一种基于Sqoop的关联感知方法(CA_Sqoop)来改进数据的放置。通过尽可能紧密地收集相关数据,可以降低网络上的数据转换成本,并提高数据库使用方面的性能。CA_Sqoop还考虑表的相关性和大小,以获得更好的数据局部性和查询效率。仿真结果表明,CA_Sqoop的数据局部性是原有Apache Sqoop的2倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Correlation Aware Technique for SQL to NoSQL Transformation
For better efficiency of parallel and distributed computing, Apache Hadoop distributes the imported data randomly on data nodes. This mechanism provides some advantages for general data analysis. With the same concept Apache Sqoop separates each table into four parts and randomly distributes them on data nodes. However, there is still a database performance concern with this data placement mechanism. This paper proposes a Correlation Aware method on Sqoop (CA_Sqoop) to improve the data placement. By gathering related data as closer as it could be to reduce the data transformation cost on the network and improve the performance in terms of database usage. The CA_Sqoop also considers the table correlation and size for better data locality and query efficiency. Simulation results show that data locality of CA_Sqoop is two times better than that of original Apache Sqoop.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信