MaRDIFlow: FAIR计算实验文档化和集成的工作流框架

Pavan L. Veluvali, J. Heiland, Peter Benner
{"title":"MaRDIFlow: FAIR计算实验文档化和集成的工作流框架","authors":"Pavan L. Veluvali, J. Heiland, Peter Benner","doi":"10.52825/cordi.v1i.323","DOIUrl":null,"url":null,"abstract":"Numerical algorithms and computational tools are essential for managing and analyzing complex data processing tasks. With ever increasing availability of meta-data and parameter-driven simulations, the demand and the need for reliable and automated workflow frameworks to reproduce computational experiments has grown.  In this work, we aim to develop a novel computational workflow framework, namely MaRDIFlow, that describes the abstraction of multi-layered workflow components. Herein, we plan to enable and implement scientific computing data FAIRness into actionable guidelines for FAIR computational experiments.","PeriodicalId":359879,"journal":{"name":"Proceedings of the Conference on Research Data Infrastructure","volume":"418 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"MaRDIFlow: A Workflow Framework for Documentation and Integration of FAIR Computational Experiments\",\"authors\":\"Pavan L. Veluvali, J. Heiland, Peter Benner\",\"doi\":\"10.52825/cordi.v1i.323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Numerical algorithms and computational tools are essential for managing and analyzing complex data processing tasks. With ever increasing availability of meta-data and parameter-driven simulations, the demand and the need for reliable and automated workflow frameworks to reproduce computational experiments has grown.  In this work, we aim to develop a novel computational workflow framework, namely MaRDIFlow, that describes the abstraction of multi-layered workflow components. Herein, we plan to enable and implement scientific computing data FAIRness into actionable guidelines for FAIR computational experiments.\",\"PeriodicalId\":359879,\"journal\":{\"name\":\"Proceedings of the Conference on Research Data Infrastructure\",\"volume\":\"418 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Conference on Research Data Infrastructure\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52825/cordi.v1i.323\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Conference on Research Data Infrastructure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52825/cordi.v1i.323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

数值算法和计算工具对于管理和分析复杂的数据处理任务至关重要。随着元数据和参数驱动模拟的可用性不断增加,对可靠和自动化工作流框架的需求和需求不断增长,以重现计算实验。在这项工作中,我们的目标是开发一种新的计算工作流框架,即MaRDIFlow,它描述了多层工作流组件的抽象。在此,我们计划使科学计算数据的公平性成为公平计算实验的可操作指南。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MaRDIFlow: A Workflow Framework for Documentation and Integration of FAIR Computational Experiments
Numerical algorithms and computational tools are essential for managing and analyzing complex data processing tasks. With ever increasing availability of meta-data and parameter-driven simulations, the demand and the need for reliable and automated workflow frameworks to reproduce computational experiments has grown.  In this work, we aim to develop a novel computational workflow framework, namely MaRDIFlow, that describes the abstraction of multi-layered workflow components. Herein, we plan to enable and implement scientific computing data FAIRness into actionable guidelines for FAIR computational experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信