基于模型更新和高斯金字塔的核鲁棒目标跟踪

Z. Ali, S. Hussain, I. A. Taj
{"title":"基于模型更新和高斯金字塔的核鲁棒目标跟踪","authors":"Z. Ali, S. Hussain, I. A. Taj","doi":"10.1109/ICET.2005.1558870","DOIUrl":null,"url":null,"abstract":"Visionbasedtracking, being a challenging engineering problem isone ofthehotresearch areas in*nachine vision. Inrecentstuidies Kernel based tracking usinig Bhattacharya similaritv mea.sutre is showntobean eficient techniquie fornon-rigid object tracking through thesequienceofimnages. In this paper we presented a robutst and efficient tracking approach Jbrtargets having larger motions ascompared totheir sizes. Outr tracking approach is based on calculating theGaussian pyramids ofthe imagesandthenapplying mean shift algorithm at eachpyramid level fo6r tracking thetarget. Model based tracking often sq/fkm-s abruipt changes intarget model, which iscompensated bvthemodel updatesof target. Thisleads to a very efficient androbust nonparametric tracking algorithm Thenew method is easily abletotrack thefast moving targetsandis more robulst and environment independent as compared tooriginal kernel based object tracking.","PeriodicalId":222828,"journal":{"name":"Proceedings of the IEEE Symposium on Emerging Technologies, 2005.","volume":"556 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Kernel based robust object tracking using model updates and Gaussian pyramids\",\"authors\":\"Z. Ali, S. Hussain, I. A. Taj\",\"doi\":\"10.1109/ICET.2005.1558870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visionbasedtracking, being a challenging engineering problem isone ofthehotresearch areas in*nachine vision. Inrecentstuidies Kernel based tracking usinig Bhattacharya similaritv mea.sutre is showntobean eficient techniquie fornon-rigid object tracking through thesequienceofimnages. In this paper we presented a robutst and efficient tracking approach Jbrtargets having larger motions ascompared totheir sizes. Outr tracking approach is based on calculating theGaussian pyramids ofthe imagesandthenapplying mean shift algorithm at eachpyramid level fo6r tracking thetarget. Model based tracking often sq/fkm-s abruipt changes intarget model, which iscompensated bvthemodel updatesof target. Thisleads to a very efficient androbust nonparametric tracking algorithm Thenew method is easily abletotrack thefast moving targetsandis more robulst and environment independent as compared tooriginal kernel based object tracking.\",\"PeriodicalId\":222828,\"journal\":{\"name\":\"Proceedings of the IEEE Symposium on Emerging Technologies, 2005.\",\"volume\":\"556 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE Symposium on Emerging Technologies, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICET.2005.1558870\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE Symposium on Emerging Technologies, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICET.2005.1558870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

基于视觉的跟踪是一个具有挑战性的工程问题,是机器视觉领域的热门研究领域之一。最近研究了基于核的基于Bhattacharya的跟踪方法。通过这些序列图像,Sutre是一种有效的非刚性目标跟踪技术。在本文中,我们提出了一种鲁棒和高效的目标跟踪方法,该方法适用于运动较大的目标。我们的跟踪方法是基于计算图像的高斯金字塔,然后在每个金字塔水平上应用均值移位算法来跟踪目标。基于模型的跟踪在目标模型中经常发生sq/fkm-s的突变,这种突变被目标模型的更新所补偿。该方法可以很容易地跟踪快速运动的目标,并且与原始的基于核的目标跟踪相比,具有更强的鲁棒性和环境无关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kernel based robust object tracking using model updates and Gaussian pyramids
Visionbasedtracking, being a challenging engineering problem isone ofthehotresearch areas in*nachine vision. Inrecentstuidies Kernel based tracking usinig Bhattacharya similaritv mea.sutre is showntobean eficient techniquie fornon-rigid object tracking through thesequienceofimnages. In this paper we presented a robutst and efficient tracking approach Jbrtargets having larger motions ascompared totheir sizes. Outr tracking approach is based on calculating theGaussian pyramids ofthe imagesandthenapplying mean shift algorithm at eachpyramid level fo6r tracking thetarget. Model based tracking often sq/fkm-s abruipt changes intarget model, which iscompensated bvthemodel updatesof target. Thisleads to a very efficient androbust nonparametric tracking algorithm Thenew method is easily abletotrack thefast moving targetsandis more robulst and environment independent as compared tooriginal kernel based object tracking.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信