不要代入:处理电子病历数据分析中的信息缺失值

Jia Li, Mengdie Wang, M. Steinbach, Vipin Kumar, György J. Simon
{"title":"不要代入:处理电子病历数据分析中的信息缺失值","authors":"Jia Li, Mengdie Wang, M. Steinbach, Vipin Kumar, György J. Simon","doi":"10.1109/ICBK.2018.00062","DOIUrl":null,"url":null,"abstract":"Missing values pose a significant challenge in data analytic, especially in clinical studies, data is typically missing-not-at-random (MNAR). Applying techniques (e.g. imputations) that were designed for missing-at-random (MAR) to MNAR data, can lead to biases. In this work, we propose pattern-wise analysis, a collection of methods for building predictive models in the presence of MNAR missing values. On a per-pattern basis, this methodology constructs an individual model for each missingness pattern. We show that even the simplest pattern-wise method, Per-Pattern Modeling (PPM) outperforms models built on data sets completed by the most popular imputation methods. PPM faces difficulty when the number of missingness patterns is too high or when the missingness patterns have too few observations. We developed variants of PPM to overcome these challenges from three complementary perspectives: (i) from a model selection perspective, where PPM can select patterns to build models; (ii) a distributional perspective, where the training data set is expanded in a distribution-preserving fashion; and (iii) from a causal perspective, where a causal structure for the MNAR mechanism is assumed and exploited to convert the problem from MNAR to MAR. Evaluation of the proposed methods on both synthetic MNAR data and a real-world clinical data set of sepsis patients shows notable improvement over traditional approaches.","PeriodicalId":144958,"journal":{"name":"2018 IEEE International Conference on Big Knowledge (ICBK)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Don't Do Imputation: Dealing with Informative Missing Values in EHR Data Analysis\",\"authors\":\"Jia Li, Mengdie Wang, M. Steinbach, Vipin Kumar, György J. Simon\",\"doi\":\"10.1109/ICBK.2018.00062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Missing values pose a significant challenge in data analytic, especially in clinical studies, data is typically missing-not-at-random (MNAR). Applying techniques (e.g. imputations) that were designed for missing-at-random (MAR) to MNAR data, can lead to biases. In this work, we propose pattern-wise analysis, a collection of methods for building predictive models in the presence of MNAR missing values. On a per-pattern basis, this methodology constructs an individual model for each missingness pattern. We show that even the simplest pattern-wise method, Per-Pattern Modeling (PPM) outperforms models built on data sets completed by the most popular imputation methods. PPM faces difficulty when the number of missingness patterns is too high or when the missingness patterns have too few observations. We developed variants of PPM to overcome these challenges from three complementary perspectives: (i) from a model selection perspective, where PPM can select patterns to build models; (ii) a distributional perspective, where the training data set is expanded in a distribution-preserving fashion; and (iii) from a causal perspective, where a causal structure for the MNAR mechanism is assumed and exploited to convert the problem from MNAR to MAR. Evaluation of the proposed methods on both synthetic MNAR data and a real-world clinical data set of sepsis patients shows notable improvement over traditional approaches.\",\"PeriodicalId\":144958,\"journal\":{\"name\":\"2018 IEEE International Conference on Big Knowledge (ICBK)\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Big Knowledge (ICBK)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICBK.2018.00062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Big Knowledge (ICBK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBK.2018.00062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

缺失值对数据分析提出了重大挑战,特别是在临床研究中,数据通常是非随机缺失(MNAR)。将专为随机缺失(MAR)设计的技术(例如imputation)应用于MNAR数据可能会导致偏差。在这项工作中,我们提出了模式分析,这是在存在MNAR缺失值的情况下构建预测模型的方法集合。在每个模式的基础上,该方法为每个缺失模式构建一个单独的模型。我们表明,即使是最简单的模式方法,每模式建模(PPM)也优于建立在最流行的插值方法完成的数据集上的模型。当缺失模式的数量过高或缺失模式的观测值太少时,PPM将面临困难。我们从三个互补的角度开发了PPM的变体来克服这些挑战:(i)从模型选择的角度来看,PPM可以选择模式来构建模型;(ii)分布视角,训练数据集以保持分布的方式扩展;(iii)从因果角度来看,假设并利用MNAR机制的因果结构将问题从MNAR转化为mar。对合成MNAR数据和脓毒症患者真实临床数据集的评估表明,所提出的方法比传统方法有显著改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Don't Do Imputation: Dealing with Informative Missing Values in EHR Data Analysis
Missing values pose a significant challenge in data analytic, especially in clinical studies, data is typically missing-not-at-random (MNAR). Applying techniques (e.g. imputations) that were designed for missing-at-random (MAR) to MNAR data, can lead to biases. In this work, we propose pattern-wise analysis, a collection of methods for building predictive models in the presence of MNAR missing values. On a per-pattern basis, this methodology constructs an individual model for each missingness pattern. We show that even the simplest pattern-wise method, Per-Pattern Modeling (PPM) outperforms models built on data sets completed by the most popular imputation methods. PPM faces difficulty when the number of missingness patterns is too high or when the missingness patterns have too few observations. We developed variants of PPM to overcome these challenges from three complementary perspectives: (i) from a model selection perspective, where PPM can select patterns to build models; (ii) a distributional perspective, where the training data set is expanded in a distribution-preserving fashion; and (iii) from a causal perspective, where a causal structure for the MNAR mechanism is assumed and exploited to convert the problem from MNAR to MAR. Evaluation of the proposed methods on both synthetic MNAR data and a real-world clinical data set of sepsis patients shows notable improvement over traditional approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信