一种基于NMF的文档表示的多样化隐藏单元方法

X. Jiang, H. Zhang, R. Liu, Y. Zuo
{"title":"一种基于NMF的文档表示的多样化隐藏单元方法","authors":"X. Jiang, H. Zhang, R. Liu, Y. Zuo","doi":"10.1109/ICKEA.2016.7803001","DOIUrl":null,"url":null,"abstract":"Document modeling with hidden units as known as topics are very popular. Non-negative matrix factorization(NMF) is one of the most important techniques in document representation, which decomposes a document-term matrix into a document-topic matrix and a topic-term matrix. Since orthogonal constraint would limit terms occur only in one topic, we abandon this strong constraint. Furthermore, in order to represent documents in a certain number of topics with more semantic information, we add diversifying regularization and sparse constraint into NMF, which shows a great improvement in text classification and clustering. In the end, we draw the figure of topics similarities and display the top 20 weighted words in each topic to reveal that diversifying regularization can efficiently reduce the overlapping terms.","PeriodicalId":241850,"journal":{"name":"2016 IEEE International Conference on Knowledge Engineering and Applications (ICKEA)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A diversifying hidden units method based on NMF for document representation\",\"authors\":\"X. Jiang, H. Zhang, R. Liu, Y. Zuo\",\"doi\":\"10.1109/ICKEA.2016.7803001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Document modeling with hidden units as known as topics are very popular. Non-negative matrix factorization(NMF) is one of the most important techniques in document representation, which decomposes a document-term matrix into a document-topic matrix and a topic-term matrix. Since orthogonal constraint would limit terms occur only in one topic, we abandon this strong constraint. Furthermore, in order to represent documents in a certain number of topics with more semantic information, we add diversifying regularization and sparse constraint into NMF, which shows a great improvement in text classification and clustering. In the end, we draw the figure of topics similarities and display the top 20 weighted words in each topic to reveal that diversifying regularization can efficiently reduce the overlapping terms.\",\"PeriodicalId\":241850,\"journal\":{\"name\":\"2016 IEEE International Conference on Knowledge Engineering and Applications (ICKEA)\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Knowledge Engineering and Applications (ICKEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICKEA.2016.7803001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Knowledge Engineering and Applications (ICKEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICKEA.2016.7803001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

使用隐藏单元(如主题)的文档建模非常流行。非负矩阵分解(NMF)是文档表示中最重要的技术之一,它将文档术语矩阵分解为文档主题矩阵和主题术语矩阵。由于正交约束将限制项只出现在一个主题中,我们放弃了这种强约束。此外,为了用更多的语义信息来表示一定数量主题的文档,我们在NMF中加入了多样化正则化和稀疏约束,这在文本分类和聚类方面有了很大的提高。最后,我们绘制主题相似度图,并在每个主题中显示前20个加权词,以表明多样化正则化可以有效地减少重叠词。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A diversifying hidden units method based on NMF for document representation
Document modeling with hidden units as known as topics are very popular. Non-negative matrix factorization(NMF) is one of the most important techniques in document representation, which decomposes a document-term matrix into a document-topic matrix and a topic-term matrix. Since orthogonal constraint would limit terms occur only in one topic, we abandon this strong constraint. Furthermore, in order to represent documents in a certain number of topics with more semantic information, we add diversifying regularization and sparse constraint into NMF, which shows a great improvement in text classification and clustering. In the end, we draw the figure of topics similarities and display the top 20 weighted words in each topic to reveal that diversifying regularization can efficiently reduce the overlapping terms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信