超新星跟踪的4D反褶积和去混

S. Bongard, É. Thiébaut, F. Soulez, E. Pecontal
{"title":"超新星跟踪的4D反褶积和去混","authors":"S. Bongard, É. Thiébaut, F. Soulez, E. Pecontal","doi":"10.1109/WHISPERS.2009.5289034","DOIUrl":null,"url":null,"abstract":"We present an inverse problem approach to jointly solve a problem of deconvolution and demixing of sources from 4D (x, y, λ, t) astronomical data obtained by observing a supernova and its host galaxy at different epochs. In order to obtain supernova spectra of high photometric quality, we take special care of avoiding demixing biases and deconvolution artifacts caused by the very limited size of the field of view. We assert the performances of our method on realistic simulated data.","PeriodicalId":242447,"journal":{"name":"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"4D deconvolution and demixing for supernova follow-up\",\"authors\":\"S. Bongard, É. Thiébaut, F. Soulez, E. Pecontal\",\"doi\":\"10.1109/WHISPERS.2009.5289034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an inverse problem approach to jointly solve a problem of deconvolution and demixing of sources from 4D (x, y, λ, t) astronomical data obtained by observing a supernova and its host galaxy at different epochs. In order to obtain supernova spectra of high photometric quality, we take special care of avoiding demixing biases and deconvolution artifacts caused by the very limited size of the field of view. We assert the performances of our method on realistic simulated data.\",\"PeriodicalId\":242447,\"journal\":{\"name\":\"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WHISPERS.2009.5289034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2009.5289034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种反问题方法,联合解决了观测超新星及其宿主星系在不同时期获得的4D (x, y, λ, t)天文数据的反卷积和解混问题。为了获得高光度质量的超新星光谱,我们特别注意避免由于视野尺寸非常有限而引起的解混偏差和反卷积伪影。在真实的仿真数据上验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
4D deconvolution and demixing for supernova follow-up
We present an inverse problem approach to jointly solve a problem of deconvolution and demixing of sources from 4D (x, y, λ, t) astronomical data obtained by observing a supernova and its host galaxy at different epochs. In order to obtain supernova spectra of high photometric quality, we take special care of avoiding demixing biases and deconvolution artifacts caused by the very limited size of the field of view. We assert the performances of our method on realistic simulated data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信