概率Böhm树和概率分离

Thomas Leventis
{"title":"概率Böhm树和概率分离","authors":"Thomas Leventis","doi":"10.1145/3209108.3209126","DOIUrl":null,"url":null,"abstract":"We study the notion of observational equivalence in the call-by-name probabilistic λ-calculus, where two terms are said observationally equivalent if under any context, their head reductions converge with the same probability. Our goal is to generalise the separation theorem to this probabilistic setting. To do so we define probabilistic Böhm trees and probabilistic Nakajima trees, and we mix the well-known Böhm-out technique with some new techniques to manipulate and separate probability distributions.","PeriodicalId":389131,"journal":{"name":"Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Probabilistic Böhm Trees and Probabilistic Separation\",\"authors\":\"Thomas Leventis\",\"doi\":\"10.1145/3209108.3209126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the notion of observational equivalence in the call-by-name probabilistic λ-calculus, where two terms are said observationally equivalent if under any context, their head reductions converge with the same probability. Our goal is to generalise the separation theorem to this probabilistic setting. To do so we define probabilistic Böhm trees and probabilistic Nakajima trees, and we mix the well-known Böhm-out technique with some new techniques to manipulate and separate probability distributions.\",\"PeriodicalId\":389131,\"journal\":{\"name\":\"Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3209108.3209126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3209108.3209126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本文研究了按名调用概率λ演算中观测等价的概念,其中两项如果在任何情况下,它们的头部约简以相同的概率收敛,则称为观测等价。我们的目标是将分离定理推广到这个概率设置。为此,我们定义了概率Böhm树和概率Nakajima树,并将众所周知的Böhm-out技术与一些新技术混合在一起,以操纵和分离概率分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probabilistic Böhm Trees and Probabilistic Separation
We study the notion of observational equivalence in the call-by-name probabilistic λ-calculus, where two terms are said observationally equivalent if under any context, their head reductions converge with the same probability. Our goal is to generalise the separation theorem to this probabilistic setting. To do so we define probabilistic Böhm trees and probabilistic Nakajima trees, and we mix the well-known Böhm-out technique with some new techniques to manipulate and separate probability distributions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信