基于心电信号维数变换和机器学习的房性心动过速类型分类

S. Ruipérez-Campillo, J. Millet-Roig, F. Castells
{"title":"基于心电信号维数变换和机器学习的房性心动过速类型分类","authors":"S. Ruipérez-Campillo, J. Millet-Roig, F. Castells","doi":"10.22489/CinC.2022.349","DOIUrl":null,"url":null,"abstract":"Accurate non-invasive diagnoses in the context of cardiac diseases are problems that hitherto remain unresolved. We propose an unsupervised classification of atrial flutter (AFL) using dimensional transforms of ECG signals in high dimensional vector spaces. A mathematical model is used to generate synthetic signals based on clinical AFL signals, and hierarchical clustering analysis and novel machine learning (ML) methods are designed for the un-supervised classification. Metrics and accuracy parameters are created to assess the performance of the model, proving the power of this novel approach for the diagnosis of AFL from ECG using innovative AI algorithms.","PeriodicalId":117840,"journal":{"name":"2022 Computing in Cardiology (CinC)","volume":"133 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of Atrial Tachycardia Types Using Dimensional Transforms of ECG Signals and Machine Learning\",\"authors\":\"S. Ruipérez-Campillo, J. Millet-Roig, F. Castells\",\"doi\":\"10.22489/CinC.2022.349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate non-invasive diagnoses in the context of cardiac diseases are problems that hitherto remain unresolved. We propose an unsupervised classification of atrial flutter (AFL) using dimensional transforms of ECG signals in high dimensional vector spaces. A mathematical model is used to generate synthetic signals based on clinical AFL signals, and hierarchical clustering analysis and novel machine learning (ML) methods are designed for the un-supervised classification. Metrics and accuracy parameters are created to assess the performance of the model, proving the power of this novel approach for the diagnosis of AFL from ECG using innovative AI algorithms.\",\"PeriodicalId\":117840,\"journal\":{\"name\":\"2022 Computing in Cardiology (CinC)\",\"volume\":\"133 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Computing in Cardiology (CinC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22489/CinC.2022.349\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/CinC.2022.349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在心脏疾病的背景下,准确的非侵入性诊断是迄今为止尚未解决的问题。我们提出了一种无监督心房扑动(AFL)的分类方法,该方法使用了高维向量空间中心电信号的量纲变换。基于临床AFL信号,采用数学模型生成合成信号,设计了分层聚类分析和新型机器学习方法进行无监督分类。创建了度量和精度参数来评估模型的性能,证明了这种使用创新人工智能算法从ECG诊断AFL的新方法的强大功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of Atrial Tachycardia Types Using Dimensional Transforms of ECG Signals and Machine Learning
Accurate non-invasive diagnoses in the context of cardiac diseases are problems that hitherto remain unresolved. We propose an unsupervised classification of atrial flutter (AFL) using dimensional transforms of ECG signals in high dimensional vector spaces. A mathematical model is used to generate synthetic signals based on clinical AFL signals, and hierarchical clustering analysis and novel machine learning (ML) methods are designed for the un-supervised classification. Metrics and accuracy parameters are created to assess the performance of the model, proving the power of this novel approach for the diagnosis of AFL from ECG using innovative AI algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信