基于多源信息融合的漏磁检测数据分析

Shao Weilin, Ming Sun, Ma Yilai, Chen Jinzhong, Kang Xiaowei, Tao Meng, R. He
{"title":"基于多源信息融合的漏磁检测数据分析","authors":"Shao Weilin, Ming Sun, Ma Yilai, Chen Jinzhong, Kang Xiaowei, Tao Meng, R. He","doi":"10.3233/saem200033","DOIUrl":null,"url":null,"abstract":"For the analysis of the magnetic flux leakage detection data in pipelines, a single information source data analysis method is used to determine the pipeline characteristics with uncertainty. A multi-source information fusion data analysis technology is proposed. This paper makes full use of the information collected by the multi-source sensors of the magnetic leakage internal detector, and adopts distributed and centralized multi-source information fusion analysis technology. First, pre-analyze and judge the information data of the auxiliary sensors (speed, pressure, temperature) of the internal magnetic flux leakage detector. Then, the data of the main sensor, ID / OD sensor, axial mileage sensor, and circumferential clock sensor of the magnetic flux leakage detector are analyzed separately. Finally, the RBF neural network + least squares support vector machine (LSSVM)fusion analysis technology is adopted to realize the fusion analysis of multi-source information. The results show that this method can effectively improve the quality and reliability of data analysis compared with traditional single information source data analysis.","PeriodicalId":296740,"journal":{"name":"Studies in Applied Electromagnetics and Mechanics","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Data Analysis of Magnetic Flux Leakage Detection Based on Multi-Source Information Fusion\",\"authors\":\"Shao Weilin, Ming Sun, Ma Yilai, Chen Jinzhong, Kang Xiaowei, Tao Meng, R. He\",\"doi\":\"10.3233/saem200033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the analysis of the magnetic flux leakage detection data in pipelines, a single information source data analysis method is used to determine the pipeline characteristics with uncertainty. A multi-source information fusion data analysis technology is proposed. This paper makes full use of the information collected by the multi-source sensors of the magnetic leakage internal detector, and adopts distributed and centralized multi-source information fusion analysis technology. First, pre-analyze and judge the information data of the auxiliary sensors (speed, pressure, temperature) of the internal magnetic flux leakage detector. Then, the data of the main sensor, ID / OD sensor, axial mileage sensor, and circumferential clock sensor of the magnetic flux leakage detector are analyzed separately. Finally, the RBF neural network + least squares support vector machine (LSSVM)fusion analysis technology is adopted to realize the fusion analysis of multi-source information. The results show that this method can effectively improve the quality and reliability of data analysis compared with traditional single information source data analysis.\",\"PeriodicalId\":296740,\"journal\":{\"name\":\"Studies in Applied Electromagnetics and Mechanics\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Applied Electromagnetics and Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/saem200033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Electromagnetics and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/saem200033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

对于管道漏磁检测数据的分析,采用单信息源数据分析方法,确定具有不确定性的管道特征。提出了一种多源信息融合数据分析技术。本文充分利用漏磁探测仪多源传感器采集的信息,采用分布式、集中式多源信息融合分析技术。首先,对内漏磁检测器的辅助传感器(速度、压力、温度)的信息数据进行预分析和判断。然后,分别对漏磁检测器的主传感器、内径/外径传感器、轴向里程传感器和周向时钟传感器的数据进行分析。最后,采用RBF神经网络+最小二乘支持向量机(LSSVM)融合分析技术,实现多源信息的融合分析。结果表明,与传统的单一信息源数据分析相比,该方法能有效提高数据分析的质量和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data Analysis of Magnetic Flux Leakage Detection Based on Multi-Source Information Fusion
For the analysis of the magnetic flux leakage detection data in pipelines, a single information source data analysis method is used to determine the pipeline characteristics with uncertainty. A multi-source information fusion data analysis technology is proposed. This paper makes full use of the information collected by the multi-source sensors of the magnetic leakage internal detector, and adopts distributed and centralized multi-source information fusion analysis technology. First, pre-analyze and judge the information data of the auxiliary sensors (speed, pressure, temperature) of the internal magnetic flux leakage detector. Then, the data of the main sensor, ID / OD sensor, axial mileage sensor, and circumferential clock sensor of the magnetic flux leakage detector are analyzed separately. Finally, the RBF neural network + least squares support vector machine (LSSVM)fusion analysis technology is adopted to realize the fusion analysis of multi-source information. The results show that this method can effectively improve the quality and reliability of data analysis compared with traditional single information source data analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信