基于计算机视觉的表面粗糙度对表面纹理的依赖

C. Lee, Y. Chao
{"title":"基于计算机视觉的表面粗糙度对表面纹理的依赖","authors":"C. Lee, Y. Chao","doi":"10.1109/ROBOT.1987.1087983","DOIUrl":null,"url":null,"abstract":"A non-contact, full field vision technique is presented to determine the surface roughness values. The variation of extracted texture features, roughness (Frgh), on the arithmetic average roughness (Ra) of the test surface is studied. The effects of magnification and aperture size of the imaging system on the extracted surface features are also examined. The vision system offers a fast and accurate method for the on-line automated surface roughness inspection of machined components.","PeriodicalId":438447,"journal":{"name":"Proceedings. 1987 IEEE International Conference on Robotics and Automation","volume":"61 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Surface texture dependence on surface roughness by computer vision\",\"authors\":\"C. Lee, Y. Chao\",\"doi\":\"10.1109/ROBOT.1987.1087983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A non-contact, full field vision technique is presented to determine the surface roughness values. The variation of extracted texture features, roughness (Frgh), on the arithmetic average roughness (Ra) of the test surface is studied. The effects of magnification and aperture size of the imaging system on the extracted surface features are also examined. The vision system offers a fast and accurate method for the on-line automated surface roughness inspection of machined components.\",\"PeriodicalId\":438447,\"journal\":{\"name\":\"Proceedings. 1987 IEEE International Conference on Robotics and Automation\",\"volume\":\"61 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1987-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 1987 IEEE International Conference on Robotics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBOT.1987.1087983\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1987 IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.1987.1087983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

提出了一种非接触式、全视野视觉的表面粗糙度测量方法。研究了提取的纹理特征粗糙度(Frgh)对测试表面算术平均粗糙度(Ra)的变化规律。研究了成像系统的放大倍率和孔径大小对提取的表面特征的影响。该视觉系统为机械加工零件的表面粗糙度在线自动检测提供了一种快速、准确的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Surface texture dependence on surface roughness by computer vision
A non-contact, full field vision technique is presented to determine the surface roughness values. The variation of extracted texture features, roughness (Frgh), on the arithmetic average roughness (Ra) of the test surface is studied. The effects of magnification and aperture size of the imaging system on the extracted surface features are also examined. The vision system offers a fast and accurate method for the on-line automated surface roughness inspection of machined components.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信