最长公共前缀的快速并行计算

Julian Shun
{"title":"最长公共前缀的快速并行计算","authors":"Julian Shun","doi":"10.1109/SC.2014.37","DOIUrl":null,"url":null,"abstract":"Suffix arrays and the corresponding longest common prefix (LCP) array have wide applications in bioinformatics, information retrieval and data compression. In this work, we propose and theoretically analyze new parallel algorithms for computing the LCP array given the suffix array as input. Most of our algorithms have a work and depth (parallel time) complexity related to the LCP values of the input. We also present a slight variation of Kärkkäinen and Sanders' skew algorithm that requires linear work and poly-logarithmic depth in the worst case. We present a comprehensive experimental study of our parallel algorithms along with existing parallel and sequential LCP algorithms. On a variety of real-world and artificial strings, we show that on a 40-core shared-memory machine our fastest algorithm is up to 2.3 times faster than the fastest existing parallel algorithm, and up to 21.8 times faster than the fastest sequential LCP algorithm.","PeriodicalId":275261,"journal":{"name":"SC14: International Conference for High Performance Computing, Networking, Storage and Analysis","volume":"45 10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Fast Parallel Computation of Longest Common Prefixes\",\"authors\":\"Julian Shun\",\"doi\":\"10.1109/SC.2014.37\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Suffix arrays and the corresponding longest common prefix (LCP) array have wide applications in bioinformatics, information retrieval and data compression. In this work, we propose and theoretically analyze new parallel algorithms for computing the LCP array given the suffix array as input. Most of our algorithms have a work and depth (parallel time) complexity related to the LCP values of the input. We also present a slight variation of Kärkkäinen and Sanders' skew algorithm that requires linear work and poly-logarithmic depth in the worst case. We present a comprehensive experimental study of our parallel algorithms along with existing parallel and sequential LCP algorithms. On a variety of real-world and artificial strings, we show that on a 40-core shared-memory machine our fastest algorithm is up to 2.3 times faster than the fastest existing parallel algorithm, and up to 21.8 times faster than the fastest sequential LCP algorithm.\",\"PeriodicalId\":275261,\"journal\":{\"name\":\"SC14: International Conference for High Performance Computing, Networking, Storage and Analysis\",\"volume\":\"45 10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SC14: International Conference for High Performance Computing, Networking, Storage and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SC.2014.37\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SC14: International Conference for High Performance Computing, Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC.2014.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

后缀阵列及其对应的最长公共前缀阵列在生物信息学、信息检索和数据压缩等领域有着广泛的应用。在这项工作中,我们提出并从理论上分析了以后缀数组为输入的LCP数组计算的新并行算法。我们的大多数算法都具有与输入LCP值相关的工作和深度(并行时间)复杂性。我们还提出了Kärkkäinen和Sanders的倾斜算法的轻微变化,在最坏的情况下需要线性工作和多对数深度。我们对我们的并行算法以及现有的并行和顺序LCP算法进行了全面的实验研究。在各种现实世界和人工字符串上,我们展示了在40核共享内存机器上,我们最快的算法比现有最快的并行算法快2.3倍,比最快的顺序LCP算法快21.8倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast Parallel Computation of Longest Common Prefixes
Suffix arrays and the corresponding longest common prefix (LCP) array have wide applications in bioinformatics, information retrieval and data compression. In this work, we propose and theoretically analyze new parallel algorithms for computing the LCP array given the suffix array as input. Most of our algorithms have a work and depth (parallel time) complexity related to the LCP values of the input. We also present a slight variation of Kärkkäinen and Sanders' skew algorithm that requires linear work and poly-logarithmic depth in the worst case. We present a comprehensive experimental study of our parallel algorithms along with existing parallel and sequential LCP algorithms. On a variety of real-world and artificial strings, we show that on a 40-core shared-memory machine our fastest algorithm is up to 2.3 times faster than the fastest existing parallel algorithm, and up to 21.8 times faster than the fastest sequential LCP algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信