使用学习分析研究大班学生的表现和参与模式

Hassan Khosravi, K. Cooper
{"title":"使用学习分析研究大班学生的表现和参与模式","authors":"Hassan Khosravi, K. Cooper","doi":"10.1145/3017680.3017711","DOIUrl":null,"url":null,"abstract":"Educators continue to face significant challenges in providing high quality, post-secondary instruction in large classes including: motivating and engaging diverse populations (e.g., academic ability and backgrounds, generational expectations); and providing helpful feedback and guidance. Researchers investigate solutions to these kinds of challenges from alternative perspectives, including learning analytics (LA). Here, LA techniques are applied to explore the data collected for a large, flipped introductory programming class to (1) identify groups of students with similar patterns of performance and engagement; and (2) provide them with more meaningful appraisals that are tailored to help them effectively master the learning objectives. Two studies are reported, which apply clustering to analyze the class population, followed by an analysis of a subpopulation with extreme behaviours.","PeriodicalId":344382,"journal":{"name":"Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Using Learning Analytics to Investigate Patterns of Performance and Engagement in Large Classes\",\"authors\":\"Hassan Khosravi, K. Cooper\",\"doi\":\"10.1145/3017680.3017711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Educators continue to face significant challenges in providing high quality, post-secondary instruction in large classes including: motivating and engaging diverse populations (e.g., academic ability and backgrounds, generational expectations); and providing helpful feedback and guidance. Researchers investigate solutions to these kinds of challenges from alternative perspectives, including learning analytics (LA). Here, LA techniques are applied to explore the data collected for a large, flipped introductory programming class to (1) identify groups of students with similar patterns of performance and engagement; and (2) provide them with more meaningful appraisals that are tailored to help them effectively master the learning objectives. Two studies are reported, which apply clustering to analyze the class population, followed by an analysis of a subpopulation with extreme behaviours.\",\"PeriodicalId\":344382,\"journal\":{\"name\":\"Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3017680.3017711\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3017680.3017711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

教育工作者在提供高质量的大班高等教育方面继续面临重大挑战,包括:激励和吸引不同的人群(例如,学术能力和背景,代际期望);并提供有用的反馈和指导。研究人员从不同的角度研究这些挑战的解决方案,包括学习分析(LA)。在这里,LA技术被应用于探索为大型翻转编程入门课程收集的数据,以:(1)识别具有相似表现和参与模式的学生群体;(2)为学生提供更有意义的评估,帮助他们有效地掌握学习目标。本文报道了两项应用聚类分析类群的研究,随后对具有极端行为的亚群进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Learning Analytics to Investigate Patterns of Performance and Engagement in Large Classes
Educators continue to face significant challenges in providing high quality, post-secondary instruction in large classes including: motivating and engaging diverse populations (e.g., academic ability and backgrounds, generational expectations); and providing helpful feedback and guidance. Researchers investigate solutions to these kinds of challenges from alternative perspectives, including learning analytics (LA). Here, LA techniques are applied to explore the data collected for a large, flipped introductory programming class to (1) identify groups of students with similar patterns of performance and engagement; and (2) provide them with more meaningful appraisals that are tailored to help them effectively master the learning objectives. Two studies are reported, which apply clustering to analyze the class population, followed by an analysis of a subpopulation with extreme behaviours.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信