{"title":"$ c([0,1]^2) $上随机元素的简单紧密性条件","authors":"T. Nagai","doi":"10.5109/13083","DOIUrl":null,"url":null,"abstract":"§ 1. Based on moments of variations of random elements on CV, 112), a simple sufficient condition for tightness** is considered. § 2. Let C2 C([0, 112) be the set of all real valued continuous functions on [0, 112 with the uniform topology. W. J. Park [2], [3] considered random elements on C2 to prove the existence of Wiener measure and invariance principle on C2. W. J. Park's sufficient condition for tightness (lemma 3 in [3]) is not necessarily easy to apply directly. The object of this paper is to give a handy sufficient condition for tightness of random elements on C2. We consider random elements {Z,i(t, s), t, s 1} n 1 satisfying :","PeriodicalId":287765,"journal":{"name":"Bulletin of Mathematical Statistics","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1974-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A SIMPLE TIGHTNESS CONDITION FOR RANDOM ELEMENTS ON $ C([0,1]^2) $\",\"authors\":\"T. Nagai\",\"doi\":\"10.5109/13083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"§ 1. Based on moments of variations of random elements on CV, 112), a simple sufficient condition for tightness** is considered. § 2. Let C2 C([0, 112) be the set of all real valued continuous functions on [0, 112 with the uniform topology. W. J. Park [2], [3] considered random elements on C2 to prove the existence of Wiener measure and invariance principle on C2. W. J. Park's sufficient condition for tightness (lemma 3 in [3]) is not necessarily easy to apply directly. The object of this paper is to give a handy sufficient condition for tightness of random elements on C2. We consider random elements {Z,i(t, s), t, s 1} n 1 satisfying :\",\"PeriodicalId\":287765,\"journal\":{\"name\":\"Bulletin of Mathematical Statistics\",\"volume\":\"93 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1974-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Mathematical Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5109/13083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5109/13083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
摘要
§1。基于随机单元在CV, 112)上的变化矩,考虑了紧性**的一个简单充分条件。§2。设C2 C([0,112)是在[0,112]上具有一致拓扑的所有实值连续函数的集合。W. J. Park[2],[3]考虑C2上的随机元素,证明了C2上的Wiener测度和不变性原理的存在性。W. J. Park的紧性充分条件([3]中的引理3)不一定容易直接应用。本文的目的是给出C2上随机元素紧密性的一个方便的充分条件。假设随机元素{Z,i(t, s), t, s 1} n 1满足:
A SIMPLE TIGHTNESS CONDITION FOR RANDOM ELEMENTS ON $ C([0,1]^2) $
§ 1. Based on moments of variations of random elements on CV, 112), a simple sufficient condition for tightness** is considered. § 2. Let C2 C([0, 112) be the set of all real valued continuous functions on [0, 112 with the uniform topology. W. J. Park [2], [3] considered random elements on C2 to prove the existence of Wiener measure and invariance principle on C2. W. J. Park's sufficient condition for tightness (lemma 3 in [3]) is not necessarily easy to apply directly. The object of this paper is to give a handy sufficient condition for tightness of random elements on C2. We consider random elements {Z,i(t, s), t, s 1} n 1 satisfying :