调节填充型态,优化设计树脂传递模塑

Y. Chen, B. Minaie, A. Mescher
{"title":"调节填充型态,优化设计树脂传递模塑","authors":"Y. Chen, B. Minaie, A. Mescher","doi":"10.1115/imece2000-1238","DOIUrl":null,"url":null,"abstract":"\n During resin transfer molding (RTM), dry spot formation and air entrapment during the filling stage often lead to inferior parts and high scrap rate. These problems are usually caused by improper design of inlet conditions and vent locations that prevent the Last Point to Fill (LPF) location from coinciding with the preset vent location. This paper presents a methodology to design the RTM process with a desired filling pattern free of dry spots. Unlike the traditional filling simulation that predicts the filling pattern using prescribed inlet conditions and the specification of the preform permeability field, this methodology calculates the optimum inlet conditions based on the specification of the desired filling pattern and the prescription of preform permeability. The use of this algorithm greatly enhances the process design capability by reducing trial-and-error procedures that use traditional direct filling simulation as a primary process design tool. The numerical algorithm is described along with RTM design example showing that use of the proposed methodology results in the LPF location coinciding with the preset vent location.","PeriodicalId":198750,"journal":{"name":"CAE and Related Innovations for Polymer Processing","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regulating Filling Pattern for Optimum Design of Resin Transfer Molding\",\"authors\":\"Y. Chen, B. Minaie, A. Mescher\",\"doi\":\"10.1115/imece2000-1238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n During resin transfer molding (RTM), dry spot formation and air entrapment during the filling stage often lead to inferior parts and high scrap rate. These problems are usually caused by improper design of inlet conditions and vent locations that prevent the Last Point to Fill (LPF) location from coinciding with the preset vent location. This paper presents a methodology to design the RTM process with a desired filling pattern free of dry spots. Unlike the traditional filling simulation that predicts the filling pattern using prescribed inlet conditions and the specification of the preform permeability field, this methodology calculates the optimum inlet conditions based on the specification of the desired filling pattern and the prescription of preform permeability. The use of this algorithm greatly enhances the process design capability by reducing trial-and-error procedures that use traditional direct filling simulation as a primary process design tool. The numerical algorithm is described along with RTM design example showing that use of the proposed methodology results in the LPF location coinciding with the preset vent location.\",\"PeriodicalId\":198750,\"journal\":{\"name\":\"CAE and Related Innovations for Polymer Processing\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CAE and Related Innovations for Polymer Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2000-1238\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CAE and Related Innovations for Polymer Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2000-1238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在树脂转移成型(RTM)过程中,填充阶段的干斑形成和空气夹持往往导致劣质零件和高废品率。这些问题通常是由于进口条件和排气位置设计不当造成的,导致最后填充点(LPF)位置与预设的排气位置不一致。本文提出了一种设计RTM工艺的方法,该工艺具有理想的无干点填充图案。传统的充填模拟方法是使用规定的进口条件和预成型渗透场规格来预测充填方式,而该方法是根据期望的充填方式规格和预成型渗透场规格来计算最佳的进口条件。该算法的使用大大提高了工艺设计能力,减少了传统的直接填充模拟作为主要工艺设计工具的试错过程。数值算法与RTM设计实例一起描述,表明使用所提出的方法可以使LPF位置与预设的通风口位置一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regulating Filling Pattern for Optimum Design of Resin Transfer Molding
During resin transfer molding (RTM), dry spot formation and air entrapment during the filling stage often lead to inferior parts and high scrap rate. These problems are usually caused by improper design of inlet conditions and vent locations that prevent the Last Point to Fill (LPF) location from coinciding with the preset vent location. This paper presents a methodology to design the RTM process with a desired filling pattern free of dry spots. Unlike the traditional filling simulation that predicts the filling pattern using prescribed inlet conditions and the specification of the preform permeability field, this methodology calculates the optimum inlet conditions based on the specification of the desired filling pattern and the prescription of preform permeability. The use of this algorithm greatly enhances the process design capability by reducing trial-and-error procedures that use traditional direct filling simulation as a primary process design tool. The numerical algorithm is described along with RTM design example showing that use of the proposed methodology results in the LPF location coinciding with the preset vent location.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信