{"title":"逻辑识别同构命题的证明规范化","authors":"Alejandro Díaz-Caro, Gilles Dowek","doi":"10.4230/LIPIcs.FSCD.2019.14","DOIUrl":null,"url":null,"abstract":"We define a fragment of propositional logic where isomorphic propositions, such as $A\\land B$ and $B\\land A$, or $A\\Rightarrow (B\\land C)$ and $(A\\Rightarrow B)\\land(A\\Rightarrow C)$ are identified. We define System I, a proof language for this logic, and prove its normalisation and consistency.","PeriodicalId":284975,"journal":{"name":"International Conference on Formal Structures for Computation and Deduction","volume":"20 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Proof Normalisation in a Logic Identifying Isomorphic Propositions\",\"authors\":\"Alejandro Díaz-Caro, Gilles Dowek\",\"doi\":\"10.4230/LIPIcs.FSCD.2019.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We define a fragment of propositional logic where isomorphic propositions, such as $A\\\\land B$ and $B\\\\land A$, or $A\\\\Rightarrow (B\\\\land C)$ and $(A\\\\Rightarrow B)\\\\land(A\\\\Rightarrow C)$ are identified. We define System I, a proof language for this logic, and prove its normalisation and consistency.\",\"PeriodicalId\":284975,\"journal\":{\"name\":\"International Conference on Formal Structures for Computation and Deduction\",\"volume\":\"20 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Formal Structures for Computation and Deduction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.FSCD.2019.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Formal Structures for Computation and Deduction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.FSCD.2019.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
摘要
我们定义一个命题逻辑片段,其中同构命题,如$ a \land B$和$B\land a $,或$ a \Rightarrow (B\land C)$和$(a \Rightarrow B)\land(a \Rightarrow C)$被识别。我们定义了这个逻辑的证明语言系统I,并证明了它的规格化和一致性。
Proof Normalisation in a Logic Identifying Isomorphic Propositions
We define a fragment of propositional logic where isomorphic propositions, such as $A\land B$ and $B\land A$, or $A\Rightarrow (B\land C)$ and $(A\Rightarrow B)\land(A\Rightarrow C)$ are identified. We define System I, a proof language for this logic, and prove its normalisation and consistency.