股票市场的深度趋势跟踪交易策略

P. Eggebrecht, E. Lütkebohmert
{"title":"股票市场的深度趋势跟踪交易策略","authors":"P. Eggebrecht, E. Lütkebohmert","doi":"10.3905/jfds.2023.1.120","DOIUrl":null,"url":null,"abstract":"In this article, the authors present a new deep trend-following strategy that selectively buys constituents of the S&P 500 Index that are estimated to be upward trending. Therefore, they construct a binary momentum indicator based on a recursive algorithm and then train a convolutional neural network combined with a long short-term memory model to classify periods that are defined as upward trends. The strategy, which can be used as an alternative to traditional quantitative momentum ranking models, generates returns up to 27.3% per annum over the out-of-sample period from January 2010 to December 2019 and achieves a Sharpe ratio of 1.3 after accounting for transaction costs on daily data. The authors show that volatility scaling can further increase the risk–return profile and lower the maximum drawdown of the strategy.","PeriodicalId":199045,"journal":{"name":"The Journal of Financial Data Science","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Deep Trend-Following Trading Strategy for Equity Markets\",\"authors\":\"P. Eggebrecht, E. Lütkebohmert\",\"doi\":\"10.3905/jfds.2023.1.120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, the authors present a new deep trend-following strategy that selectively buys constituents of the S&P 500 Index that are estimated to be upward trending. Therefore, they construct a binary momentum indicator based on a recursive algorithm and then train a convolutional neural network combined with a long short-term memory model to classify periods that are defined as upward trends. The strategy, which can be used as an alternative to traditional quantitative momentum ranking models, generates returns up to 27.3% per annum over the out-of-sample period from January 2010 to December 2019 and achieves a Sharpe ratio of 1.3 after accounting for transaction costs on daily data. The authors show that volatility scaling can further increase the risk–return profile and lower the maximum drawdown of the strategy.\",\"PeriodicalId\":199045,\"journal\":{\"name\":\"The Journal of Financial Data Science\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Financial Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3905/jfds.2023.1.120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Financial Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3905/jfds.2023.1.120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,作者提出了一种新的深度趋势跟踪策略,即有选择地购买标准普尔500指数中估计有上升趋势的成分股。因此,他们基于递归算法构建二元动量指标,然后结合长短期记忆模型训练卷积神经网络,对定义为上升趋势的时期进行分类。该策略可以作为传统定量动量排名模型的替代方案,在2010年1月至2019年12月的样本外期间,每年的回报率高达27.3%,在考虑日常数据的交易成本后,夏普比率达到1.3。研究表明,波动率缩放可以进一步提高风险收益曲线,降低策略的最大回调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Deep Trend-Following Trading Strategy for Equity Markets
In this article, the authors present a new deep trend-following strategy that selectively buys constituents of the S&P 500 Index that are estimated to be upward trending. Therefore, they construct a binary momentum indicator based on a recursive algorithm and then train a convolutional neural network combined with a long short-term memory model to classify periods that are defined as upward trends. The strategy, which can be used as an alternative to traditional quantitative momentum ranking models, generates returns up to 27.3% per annum over the out-of-sample period from January 2010 to December 2019 and achieves a Sharpe ratio of 1.3 after accounting for transaction costs on daily data. The authors show that volatility scaling can further increase the risk–return profile and lower the maximum drawdown of the strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信