SMT在多核时代的好处:线程级并行度的灵活性

Stijn Eyerman, L. Eeckhout
{"title":"SMT在多核时代的好处:线程级并行度的灵活性","authors":"Stijn Eyerman, L. Eeckhout","doi":"10.1145/2541940.2541954","DOIUrl":null,"url":null,"abstract":"The number of active threads in a multi-core processor varies over time and is often much smaller than the number of supported hardware threads. This requires multi-core chip designs to balance core count and per-core performance. Low active thread counts benefit from a few big, high-performance cores, while high active thread counts benefit more from a sea of small, energy-efficient cores. This paper comprehensively studies the trade-offs in multi-core design given dynamically varying active thread counts. We find that, under these workload conditions, a homogeneous multi-core processor, consisting of a few high-performance SMT cores, typically outperforms heterogeneous multi-cores consisting of a mix of big and small cores (without SMT), within the same power budget. We also show that a homogeneous multi-core performs almost as well as a heterogeneous multi-core that also implements SMT, as well as a dynamic multi-core, while being less complex to design and verify. Further, heterogeneous multi-cores that power-gate idle cores yield (only) slightly better energy-efficiency compared to homogeneous multi-cores. The overall conclusion is that the benefit of SMT in the multi-core era is to provide flexibility with respect to the available thread-level parallelism. Consequently, homogeneous multi-cores with big SMT cores are competitive high-performance, energy-efficient design points for workloads with dynamically varying active thread counts.","PeriodicalId":128805,"journal":{"name":"Proceedings of the 19th international conference on Architectural support for programming languages and operating systems","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"The benefit of SMT in the multi-core era: flexibility towards degrees of thread-level parallelism\",\"authors\":\"Stijn Eyerman, L. Eeckhout\",\"doi\":\"10.1145/2541940.2541954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The number of active threads in a multi-core processor varies over time and is often much smaller than the number of supported hardware threads. This requires multi-core chip designs to balance core count and per-core performance. Low active thread counts benefit from a few big, high-performance cores, while high active thread counts benefit more from a sea of small, energy-efficient cores. This paper comprehensively studies the trade-offs in multi-core design given dynamically varying active thread counts. We find that, under these workload conditions, a homogeneous multi-core processor, consisting of a few high-performance SMT cores, typically outperforms heterogeneous multi-cores consisting of a mix of big and small cores (without SMT), within the same power budget. We also show that a homogeneous multi-core performs almost as well as a heterogeneous multi-core that also implements SMT, as well as a dynamic multi-core, while being less complex to design and verify. Further, heterogeneous multi-cores that power-gate idle cores yield (only) slightly better energy-efficiency compared to homogeneous multi-cores. The overall conclusion is that the benefit of SMT in the multi-core era is to provide flexibility with respect to the available thread-level parallelism. Consequently, homogeneous multi-cores with big SMT cores are competitive high-performance, energy-efficient design points for workloads with dynamically varying active thread counts.\",\"PeriodicalId\":128805,\"journal\":{\"name\":\"Proceedings of the 19th international conference on Architectural support for programming languages and operating systems\",\"volume\":\"125 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 19th international conference on Architectural support for programming languages and operating systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2541940.2541954\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th international conference on Architectural support for programming languages and operating systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2541940.2541954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

多核处理器中活动线程的数量随时间而变化,并且通常比支持的硬件线程的数量小得多。这需要多核芯片设计来平衡核数和每核性能。低活动线程数受益于几个大的、高性能的内核,而高活动线程数受益于大量的小的、节能的内核。本文全面研究了动态变化活动线程数的多核设计中的权衡问题。我们发现,在这些工作负载条件下,在相同的功率预算下,由几个高性能SMT内核组成的同质多核处理器通常优于由大小内核混合组成的异构多核(没有SMT)。我们还表明,同构多核的性能几乎与实现SMT的异构多核以及动态多核一样好,同时设计和验证的复杂性较低。此外,与同质多核相比,具有电源门空闲核的异构多核(仅)产生稍好的能源效率。总的结论是,在多核时代,SMT的好处是在可用的线程级并行性方面提供了灵活性。因此,对于动态变化的活动线程数的工作负载,具有大SMT内核的同构多核是具有竞争力的高性能、节能设计点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The benefit of SMT in the multi-core era: flexibility towards degrees of thread-level parallelism
The number of active threads in a multi-core processor varies over time and is often much smaller than the number of supported hardware threads. This requires multi-core chip designs to balance core count and per-core performance. Low active thread counts benefit from a few big, high-performance cores, while high active thread counts benefit more from a sea of small, energy-efficient cores. This paper comprehensively studies the trade-offs in multi-core design given dynamically varying active thread counts. We find that, under these workload conditions, a homogeneous multi-core processor, consisting of a few high-performance SMT cores, typically outperforms heterogeneous multi-cores consisting of a mix of big and small cores (without SMT), within the same power budget. We also show that a homogeneous multi-core performs almost as well as a heterogeneous multi-core that also implements SMT, as well as a dynamic multi-core, while being less complex to design and verify. Further, heterogeneous multi-cores that power-gate idle cores yield (only) slightly better energy-efficiency compared to homogeneous multi-cores. The overall conclusion is that the benefit of SMT in the multi-core era is to provide flexibility with respect to the available thread-level parallelism. Consequently, homogeneous multi-cores with big SMT cores are competitive high-performance, energy-efficient design points for workloads with dynamically varying active thread counts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信