{"title":"具有非线性健康动力学的自适应放射治疗算子分裂","authors":"A. Fu, L. Xing, Stephen P. Boyd","doi":"10.1080/10556788.2022.2078824","DOIUrl":null,"url":null,"abstract":"ABSTRACT We present an optimization-based approach to radiation treatment planning over time. Our approach formulates treatment planning as an optimal control problem with nonlinear patient health dynamics derived from the standard linear-quadratic cell survival model. As the formulation is nonconvex, we propose a method for obtaining an approximate solution by solving a sequence of convex optimization problems. This method is fast, efficient, and robust to model error, adapting readily to changes in the patient's health between treatment sessions. Moreover, we show that it can be combined with the operator splitting method ADMM to produce an algorithm that is highly scalable and can handle large clinical cases. We introduce an open-source Python implementation of our algorithm, AdaRad, and demonstrate its performance on several examples.","PeriodicalId":124811,"journal":{"name":"Optimization Methods and Software","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Operator splitting for adaptive radiation therapy with nonlinear health dynamics\",\"authors\":\"A. Fu, L. Xing, Stephen P. Boyd\",\"doi\":\"10.1080/10556788.2022.2078824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT We present an optimization-based approach to radiation treatment planning over time. Our approach formulates treatment planning as an optimal control problem with nonlinear patient health dynamics derived from the standard linear-quadratic cell survival model. As the formulation is nonconvex, we propose a method for obtaining an approximate solution by solving a sequence of convex optimization problems. This method is fast, efficient, and robust to model error, adapting readily to changes in the patient's health between treatment sessions. Moreover, we show that it can be combined with the operator splitting method ADMM to produce an algorithm that is highly scalable and can handle large clinical cases. We introduce an open-source Python implementation of our algorithm, AdaRad, and demonstrate its performance on several examples.\",\"PeriodicalId\":124811,\"journal\":{\"name\":\"Optimization Methods and Software\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimization Methods and Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10556788.2022.2078824\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Methods and Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10556788.2022.2078824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Operator splitting for adaptive radiation therapy with nonlinear health dynamics
ABSTRACT We present an optimization-based approach to radiation treatment planning over time. Our approach formulates treatment planning as an optimal control problem with nonlinear patient health dynamics derived from the standard linear-quadratic cell survival model. As the formulation is nonconvex, we propose a method for obtaining an approximate solution by solving a sequence of convex optimization problems. This method is fast, efficient, and robust to model error, adapting readily to changes in the patient's health between treatment sessions. Moreover, we show that it can be combined with the operator splitting method ADMM to produce an algorithm that is highly scalable and can handle large clinical cases. We introduce an open-source Python implementation of our algorithm, AdaRad, and demonstrate its performance on several examples.