HPCGen:扫描路径生成的分层k均值聚类和基于水平的主成分

Wolfgang Fuhl
{"title":"HPCGen:扫描路径生成的分层k均值聚类和基于水平的主成分","authors":"Wolfgang Fuhl","doi":"10.1145/3517031.3529625","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new approach for decomposing scan paths and its utility for generating new scan paths. For this purpose, we use the K-Means clustering procedure to the raw gaze data and subsequently iteratively to find more clusters in the found clusters. The found clusters are grouped for each level in the hierarchy, and the most important principal components are computed from the data contained in them. Using this tree hierarchy and the principal components, new scan paths can be generated that match the human behavior of the original data. We show that this generated data is very useful for generating new data for scan path classification but can also be used to generate fake scan paths. Code can be downloaded here https://atreus.informatik.uni-tuebingen.de/seafile/d/8e2ab8c3fdd444e1a135/?p=%2FHPCGen&mode=list.","PeriodicalId":339393,"journal":{"name":"2022 Symposium on Eye Tracking Research and Applications","volume":"548 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"HPCGen: Hierarchical K-Means Clustering and Level Based Principal Components for Scan Path Genaration\",\"authors\":\"Wolfgang Fuhl\",\"doi\":\"10.1145/3517031.3529625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a new approach for decomposing scan paths and its utility for generating new scan paths. For this purpose, we use the K-Means clustering procedure to the raw gaze data and subsequently iteratively to find more clusters in the found clusters. The found clusters are grouped for each level in the hierarchy, and the most important principal components are computed from the data contained in them. Using this tree hierarchy and the principal components, new scan paths can be generated that match the human behavior of the original data. We show that this generated data is very useful for generating new data for scan path classification but can also be used to generate fake scan paths. Code can be downloaded here https://atreus.informatik.uni-tuebingen.de/seafile/d/8e2ab8c3fdd444e1a135/?p=%2FHPCGen&mode=list.\",\"PeriodicalId\":339393,\"journal\":{\"name\":\"2022 Symposium on Eye Tracking Research and Applications\",\"volume\":\"548 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Symposium on Eye Tracking Research and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3517031.3529625\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Symposium on Eye Tracking Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3517031.3529625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种新的扫描路径分解方法及其在生成新扫描路径中的应用。为此,我们对原始凝视数据使用K-Means聚类过程,然后迭代地在发现的聚类中找到更多的聚类。找到的集群针对层次结构中的每个级别进行分组,并根据其中包含的数据计算最重要的主成分。使用这个树状层次结构和主成分,可以生成与原始数据的人类行为相匹配的新扫描路径。我们表明,生成的数据对于生成用于扫描路径分类的新数据非常有用,但也可用于生成假扫描路径。代码可以在这里下载https://atreus.informatik.uni-tuebingen.de/seafile/d/8e2ab8c3fdd444e1a135/?p=%2FHPCGen&mode=list。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HPCGen: Hierarchical K-Means Clustering and Level Based Principal Components for Scan Path Genaration
In this paper, we present a new approach for decomposing scan paths and its utility for generating new scan paths. For this purpose, we use the K-Means clustering procedure to the raw gaze data and subsequently iteratively to find more clusters in the found clusters. The found clusters are grouped for each level in the hierarchy, and the most important principal components are computed from the data contained in them. Using this tree hierarchy and the principal components, new scan paths can be generated that match the human behavior of the original data. We show that this generated data is very useful for generating new data for scan path classification but can also be used to generate fake scan paths. Code can be downloaded here https://atreus.informatik.uni-tuebingen.de/seafile/d/8e2ab8c3fdd444e1a135/?p=%2FHPCGen&mode=list.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信