希望

M. Yasugi, Daisuke Muraoka, Tasuku Hiraishi, Seiji Umatani, Kento Emoto
{"title":"希望","authors":"M. Yasugi, Daisuke Muraoka, Tasuku Hiraishi, Seiji Umatani, Kento Emoto","doi":"10.1145/3337821.3337899","DOIUrl":null,"url":null,"abstract":"This paper presents a new approach to fault-tolerant language systems without a single point of failure for irregular parallel applications. Work-stealing frameworks provide good load balancing for many parallel applications, including irregular ones written in a divide-and-conquer style. However, work-stealing frameworks with fault-tolerant features such as checkpointing do not always work well. This paper proposes a completely opposite \"work omission\" paradigm and its more detailed concept as a \"hierarchical omission\"-based parallel execution model called HOPE. HOPE programmers' task is to specify which regions in imperative code can be executed in sequential but arbitrary order and how their partial results can be accessed. HOPE workers spawn no tasks/threads at all; rather, every worker has the entire work of the program with its own planned execution order, and then the workers and the underlying message mediation systems automatically exchange partial results to omit hierarchical subcomputations. Even with fault tolerance, the HOPE framework provides parallel speedups for many parallel applications, including irregular ones.","PeriodicalId":405273,"journal":{"name":"Proceedings of the 48th International Conference on Parallel Processing","volume":"300 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"HOPE\",\"authors\":\"M. Yasugi, Daisuke Muraoka, Tasuku Hiraishi, Seiji Umatani, Kento Emoto\",\"doi\":\"10.1145/3337821.3337899\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new approach to fault-tolerant language systems without a single point of failure for irregular parallel applications. Work-stealing frameworks provide good load balancing for many parallel applications, including irregular ones written in a divide-and-conquer style. However, work-stealing frameworks with fault-tolerant features such as checkpointing do not always work well. This paper proposes a completely opposite \\\"work omission\\\" paradigm and its more detailed concept as a \\\"hierarchical omission\\\"-based parallel execution model called HOPE. HOPE programmers' task is to specify which regions in imperative code can be executed in sequential but arbitrary order and how their partial results can be accessed. HOPE workers spawn no tasks/threads at all; rather, every worker has the entire work of the program with its own planned execution order, and then the workers and the underlying message mediation systems automatically exchange partial results to omit hierarchical subcomputations. Even with fault tolerance, the HOPE framework provides parallel speedups for many parallel applications, including irregular ones.\",\"PeriodicalId\":405273,\"journal\":{\"name\":\"Proceedings of the 48th International Conference on Parallel Processing\",\"volume\":\"300 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 48th International Conference on Parallel Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3337821.3337899\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 48th International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3337821.3337899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
HOPE
This paper presents a new approach to fault-tolerant language systems without a single point of failure for irregular parallel applications. Work-stealing frameworks provide good load balancing for many parallel applications, including irregular ones written in a divide-and-conquer style. However, work-stealing frameworks with fault-tolerant features such as checkpointing do not always work well. This paper proposes a completely opposite "work omission" paradigm and its more detailed concept as a "hierarchical omission"-based parallel execution model called HOPE. HOPE programmers' task is to specify which regions in imperative code can be executed in sequential but arbitrary order and how their partial results can be accessed. HOPE workers spawn no tasks/threads at all; rather, every worker has the entire work of the program with its own planned execution order, and then the workers and the underlying message mediation systems automatically exchange partial results to omit hierarchical subcomputations. Even with fault tolerance, the HOPE framework provides parallel speedups for many parallel applications, including irregular ones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信