域边界奇异点处微分方程解的光滑性

A. Babin
{"title":"域边界奇异点处微分方程解的光滑性","authors":"A. Babin","doi":"10.1070/IM1991V037N03ABEH002155","DOIUrl":null,"url":null,"abstract":"Second-order elliptic equations with analytic coefficients and right sides in a domain with piecewise smooth boundary are studied. It is assumed that the boundary is characteristic at all points. Both Lipschitz and non-Lipschitz singularities of the boundary are admitted. It is proved that for large values of the spectral parameter, solutions possess high smoothness even at those points where the boundary has singularities. The results are based on the study of a constructive representation of solutions of the equations in the form of series of analytic functions.","PeriodicalId":159459,"journal":{"name":"Mathematics of The Ussr-izvestiya","volume":"519 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ON THE SMOOTHNESS OF SOLUTIONS OF DIFFERENTIAL EQUATIONS AT SINGULAR POINTS OF THE BOUNDARY OF THE DOMAIN\",\"authors\":\"A. Babin\",\"doi\":\"10.1070/IM1991V037N03ABEH002155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Second-order elliptic equations with analytic coefficients and right sides in a domain with piecewise smooth boundary are studied. It is assumed that the boundary is characteristic at all points. Both Lipschitz and non-Lipschitz singularities of the boundary are admitted. It is proved that for large values of the spectral parameter, solutions possess high smoothness even at those points where the boundary has singularities. The results are based on the study of a constructive representation of solutions of the equations in the form of series of analytic functions.\",\"PeriodicalId\":159459,\"journal\":{\"name\":\"Mathematics of The Ussr-izvestiya\",\"volume\":\"519 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of The Ussr-izvestiya\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1070/IM1991V037N03ABEH002155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of The Ussr-izvestiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1070/IM1991V037N03ABEH002155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了分段光滑边界域上具有解析系数和右侧的二阶椭圆方程。假定边界在所有点上都具有特征。边界的Lipschitz奇点和非Lipschitz奇点都是允许的。证明了当谱参数值较大时,即使在边界有奇点处,解也具有较高的平滑性。这些结果是基于对解析函数级数形式的方程解的构造表示的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ON THE SMOOTHNESS OF SOLUTIONS OF DIFFERENTIAL EQUATIONS AT SINGULAR POINTS OF THE BOUNDARY OF THE DOMAIN
Second-order elliptic equations with analytic coefficients and right sides in a domain with piecewise smooth boundary are studied. It is assumed that the boundary is characteristic at all points. Both Lipschitz and non-Lipschitz singularities of the boundary are admitted. It is proved that for large values of the spectral parameter, solutions possess high smoothness even at those points where the boundary has singularities. The results are based on the study of a constructive representation of solutions of the equations in the form of series of analytic functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信