B. Sfez, J. Oudar, J. Michel, R. Kuszelewicz, R. Azoulay
{"title":"集成布拉格反射器的高对比度多量子阱光双稳器件","authors":"B. Sfez, J. Oudar, J. Michel, R. Kuszelewicz, R. Azoulay","doi":"10.1063/1.103679","DOIUrl":null,"url":null,"abstract":"Monolithic bistable microcavities with a GaAs/Al0.3Ga0.7As multiple quantum well active layer and AlAs/Al0.1Ga0.9As Bragg reflectors have been fabricated by metalorganic vapor phase epitaxy. The design of the whole structure is such that a good cavity finesse and a high contrast in the reflective mode are simultaneously obtained. This results in a bistability power threshold of less than 3 mW at 838 nm and a contrast ratio as high as 30:1. A new method is proposed, which allows to measure the nonlinear refractive index in a quasi-continuous regime, and in the operating conditions for bistability. The nonlinear index is shown to saturate at higher power, which evidences the need of a good cavity finesse for such bistable devices. Memory effect is then demonstrated: the sample can stay in either of its two stable states for more than 1 ms without spontaneously switching, and for input pulses as short as 60 ns. Finally we describe two-beam experiments with a new experimental configuration, also in reflection, which allows to mix the two input beams and extract the output beam with an ideal 100% efficiency.","PeriodicalId":441335,"journal":{"name":"Nonlinear Dynamics in Optical Systems","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"56","resultStr":"{\"title\":\"High-Contrast Multiple Quantum-Well Optical Bistable Device with Integrated Bragg Reflectors\",\"authors\":\"B. Sfez, J. Oudar, J. Michel, R. Kuszelewicz, R. Azoulay\",\"doi\":\"10.1063/1.103679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Monolithic bistable microcavities with a GaAs/Al0.3Ga0.7As multiple quantum well active layer and AlAs/Al0.1Ga0.9As Bragg reflectors have been fabricated by metalorganic vapor phase epitaxy. The design of the whole structure is such that a good cavity finesse and a high contrast in the reflective mode are simultaneously obtained. This results in a bistability power threshold of less than 3 mW at 838 nm and a contrast ratio as high as 30:1. A new method is proposed, which allows to measure the nonlinear refractive index in a quasi-continuous regime, and in the operating conditions for bistability. The nonlinear index is shown to saturate at higher power, which evidences the need of a good cavity finesse for such bistable devices. Memory effect is then demonstrated: the sample can stay in either of its two stable states for more than 1 ms without spontaneously switching, and for input pulses as short as 60 ns. Finally we describe two-beam experiments with a new experimental configuration, also in reflection, which allows to mix the two input beams and extract the output beam with an ideal 100% efficiency.\",\"PeriodicalId\":441335,\"journal\":{\"name\":\"Nonlinear Dynamics in Optical Systems\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"56\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Dynamics in Optical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.103679\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Dynamics in Optical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.103679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High-Contrast Multiple Quantum-Well Optical Bistable Device with Integrated Bragg Reflectors
Monolithic bistable microcavities with a GaAs/Al0.3Ga0.7As multiple quantum well active layer and AlAs/Al0.1Ga0.9As Bragg reflectors have been fabricated by metalorganic vapor phase epitaxy. The design of the whole structure is such that a good cavity finesse and a high contrast in the reflective mode are simultaneously obtained. This results in a bistability power threshold of less than 3 mW at 838 nm and a contrast ratio as high as 30:1. A new method is proposed, which allows to measure the nonlinear refractive index in a quasi-continuous regime, and in the operating conditions for bistability. The nonlinear index is shown to saturate at higher power, which evidences the need of a good cavity finesse for such bistable devices. Memory effect is then demonstrated: the sample can stay in either of its two stable states for more than 1 ms without spontaneously switching, and for input pulses as short as 60 ns. Finally we describe two-beam experiments with a new experimental configuration, also in reflection, which allows to mix the two input beams and extract the output beam with an ideal 100% efficiency.