用于视听语音增强的变分自编码器解纠缠学习

Guillaume Carbajal, Julius Richter, Timo Gerkmann
{"title":"用于视听语音增强的变分自编码器解纠缠学习","authors":"Guillaume Carbajal, Julius Richter, Timo Gerkmann","doi":"10.1109/WASPAA52581.2021.9632676","DOIUrl":null,"url":null,"abstract":"Recently, the standard variational autoencoder has been successfully used to learn a probabilistic prior over speech signals, which is then used to perform speech enhancement. Variational autoen-coders have then been conditioned on a label describing a high-level speech attribute (e.g. speech activity) that allows for a more explicit control of speech generation. However, the label is not guaranteed to be disentangled from the other latent variables, which results in limited performance improvements compared to the standard variational autoencoder. In this work, we propose to use an adversarial training scheme for variational autoencoders to disentangle the label from the other latent variables. At training, we use a discriminator that competes with the encoder of the variational autoencoder. Simultaneously’ we also use an additional encoder that estimates the label for the decoder of the variational autoencoder, which proves to be crucial to learn disentanglement. We show the benefit of the proposed disentanglement learning when a voice activity label, estimated from visual data, is used for speech enhancement.","PeriodicalId":429900,"journal":{"name":"2021 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Disentanglement Learning for Variational Autoencoders Applied to Audio-Visual Speech Enhancement\",\"authors\":\"Guillaume Carbajal, Julius Richter, Timo Gerkmann\",\"doi\":\"10.1109/WASPAA52581.2021.9632676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, the standard variational autoencoder has been successfully used to learn a probabilistic prior over speech signals, which is then used to perform speech enhancement. Variational autoen-coders have then been conditioned on a label describing a high-level speech attribute (e.g. speech activity) that allows for a more explicit control of speech generation. However, the label is not guaranteed to be disentangled from the other latent variables, which results in limited performance improvements compared to the standard variational autoencoder. In this work, we propose to use an adversarial training scheme for variational autoencoders to disentangle the label from the other latent variables. At training, we use a discriminator that competes with the encoder of the variational autoencoder. Simultaneously’ we also use an additional encoder that estimates the label for the decoder of the variational autoencoder, which proves to be crucial to learn disentanglement. We show the benefit of the proposed disentanglement learning when a voice activity label, estimated from visual data, is used for speech enhancement.\",\"PeriodicalId\":429900,\"journal\":{\"name\":\"2021 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WASPAA52581.2021.9632676\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WASPAA52581.2021.9632676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

最近,标准变分自编码器已被成功地用于学习语音信号的概率先验,然后将其用于语音增强。变分自动编码器则以描述高级语音属性(例如语音活动)的标签为条件,该标签允许更显式地控制语音生成。然而,标签不能保证从其他潜在变量中解脱出来,这导致与标准变分自编码器相比,性能改进有限。在这项工作中,我们建议使用变分自编码器的对抗训练方案来将标签从其他潜在变量中分离出来。在训练中,我们使用一个判别器与变分自编码器的编码器竞争。同时,我们还使用了一个额外的编码器来估计变分自编码器解码器的标签,这对于学习解纠缠是至关重要的。当从视觉数据中估计语音活动标签用于语音增强时,我们展示了所提出的解纠缠学习的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Disentanglement Learning for Variational Autoencoders Applied to Audio-Visual Speech Enhancement
Recently, the standard variational autoencoder has been successfully used to learn a probabilistic prior over speech signals, which is then used to perform speech enhancement. Variational autoen-coders have then been conditioned on a label describing a high-level speech attribute (e.g. speech activity) that allows for a more explicit control of speech generation. However, the label is not guaranteed to be disentangled from the other latent variables, which results in limited performance improvements compared to the standard variational autoencoder. In this work, we propose to use an adversarial training scheme for variational autoencoders to disentangle the label from the other latent variables. At training, we use a discriminator that competes with the encoder of the variational autoencoder. Simultaneously’ we also use an additional encoder that estimates the label for the decoder of the variational autoencoder, which proves to be crucial to learn disentanglement. We show the benefit of the proposed disentanglement learning when a voice activity label, estimated from visual data, is used for speech enhancement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信