基于随机聚类集成的无监督学习特征选择

H. Elghazel, A. Aussem
{"title":"基于随机聚类集成的无监督学习特征选择","authors":"H. Elghazel, A. Aussem","doi":"10.1109/ICDM.2010.137","DOIUrl":null,"url":null,"abstract":"In this paper, we propose another extension of the Random Forests paradigm to unlabeled data, leading to localized unsupervised feature selection (FS). We show that the way internal estimates are used to measure variable importance in Random Forests are also applicable to FS in unsupervised learning. We first illustrate the clustering performance of the proposed method on various data sets based on widely used external criteria of clustering quality. We then assess the accuracy and the scalability of the FS procedure on UCI and real labeled data sets and compare its effectiveness against other FS methods.","PeriodicalId":294061,"journal":{"name":"2010 IEEE International Conference on Data Mining","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Feature Selection for Unsupervised Learning Using Random Cluster Ensembles\",\"authors\":\"H. Elghazel, A. Aussem\",\"doi\":\"10.1109/ICDM.2010.137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose another extension of the Random Forests paradigm to unlabeled data, leading to localized unsupervised feature selection (FS). We show that the way internal estimates are used to measure variable importance in Random Forests are also applicable to FS in unsupervised learning. We first illustrate the clustering performance of the proposed method on various data sets based on widely used external criteria of clustering quality. We then assess the accuracy and the scalability of the FS procedure on UCI and real labeled data sets and compare its effectiveness against other FS methods.\",\"PeriodicalId\":294061,\"journal\":{\"name\":\"2010 IEEE International Conference on Data Mining\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2010.137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2010.137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

在本文中,我们提出了随机森林范式的另一个扩展到未标记数据,导致局部无监督特征选择(FS)。我们表明,在随机森林中使用内部估计来衡量变量重要性的方法也适用于无监督学习中的FS。我们首先基于广泛使用的外部聚类质量标准说明了该方法在不同数据集上的聚类性能。然后,我们在UCI和真实标记数据集上评估了FS过程的准确性和可扩展性,并将其与其他FS方法的有效性进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature Selection for Unsupervised Learning Using Random Cluster Ensembles
In this paper, we propose another extension of the Random Forests paradigm to unlabeled data, leading to localized unsupervised feature selection (FS). We show that the way internal estimates are used to measure variable importance in Random Forests are also applicable to FS in unsupervised learning. We first illustrate the clustering performance of the proposed method on various data sets based on widely used external criteria of clustering quality. We then assess the accuracy and the scalability of the FS procedure on UCI and real labeled data sets and compare its effectiveness against other FS methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信