基于进化算法的风能转换系统优化H∞控制

S. Aboulem, I. Boumhidi, F. Lamzouri, El-mahjoub Boufounas, A. Amrani
{"title":"基于进化算法的风能转换系统优化H∞控制","authors":"S. Aboulem, I. Boumhidi, F. Lamzouri, El-mahjoub Boufounas, A. Amrani","doi":"10.1109/EITECH.2017.8255311","DOIUrl":null,"url":null,"abstract":"This paper presents an optimal tracking and robust controller for a variable-speed wind turbine (VSWT). The main objective of the controller is to optimize the energy captured from the wind at below rated power, and minimize the mechanical stress in the system. In order to guarantee the wind power capture optimization without any chattering behaviour, this study proposes to combine the H∞ control with particle swarm optimization (PSO) algorithm. The PSO technique with efficient global search is used to optimize the H∞ controller parameters simultaneously to control the system trajectories, which determines the system performance. The stability of the system using this controller is analyzed by Lyapunov theory. In present work, the simulation results of the proposed method (PSO-H∞) are compared with the conventional sliding mode control (SMC). The comparison results reveal that the proposed controller is more effective in reducing the tracking error and chattering.","PeriodicalId":447139,"journal":{"name":"2017 International Conference on Electrical and Information Technologies (ICEIT)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimized H∞ Control for wind energy conversion system based on evolutionary algorithm\",\"authors\":\"S. Aboulem, I. Boumhidi, F. Lamzouri, El-mahjoub Boufounas, A. Amrani\",\"doi\":\"10.1109/EITECH.2017.8255311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an optimal tracking and robust controller for a variable-speed wind turbine (VSWT). The main objective of the controller is to optimize the energy captured from the wind at below rated power, and minimize the mechanical stress in the system. In order to guarantee the wind power capture optimization without any chattering behaviour, this study proposes to combine the H∞ control with particle swarm optimization (PSO) algorithm. The PSO technique with efficient global search is used to optimize the H∞ controller parameters simultaneously to control the system trajectories, which determines the system performance. The stability of the system using this controller is analyzed by Lyapunov theory. In present work, the simulation results of the proposed method (PSO-H∞) are compared with the conventional sliding mode control (SMC). The comparison results reveal that the proposed controller is more effective in reducing the tracking error and chattering.\",\"PeriodicalId\":447139,\"journal\":{\"name\":\"2017 International Conference on Electrical and Information Technologies (ICEIT)\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Electrical and Information Technologies (ICEIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EITECH.2017.8255311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Electrical and Information Technologies (ICEIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EITECH.2017.8255311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

针对变转速风力发电机组,提出了一种最优跟踪鲁棒控制器。控制器的主要目标是优化从低于额定功率的风中捕获的能量,并最小化系统中的机械应力。为了保证风电捕获优化不产生抖振行为,本研究提出将H∞控制与粒子群优化(PSO)算法相结合。利用高效全局搜索的粒子群算法同时优化H∞控制器参数来控制系统轨迹,从而决定系统的性能。利用李雅普诺夫理论分析了采用该控制器的系统的稳定性。在本工作中,将该方法(PSO-H∞)的仿真结果与传统滑模控制(SMC)进行了比较。对比结果表明,该控制器在减小跟踪误差和抖振方面具有较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimized H∞ Control for wind energy conversion system based on evolutionary algorithm
This paper presents an optimal tracking and robust controller for a variable-speed wind turbine (VSWT). The main objective of the controller is to optimize the energy captured from the wind at below rated power, and minimize the mechanical stress in the system. In order to guarantee the wind power capture optimization without any chattering behaviour, this study proposes to combine the H∞ control with particle swarm optimization (PSO) algorithm. The PSO technique with efficient global search is used to optimize the H∞ controller parameters simultaneously to control the system trajectories, which determines the system performance. The stability of the system using this controller is analyzed by Lyapunov theory. In present work, the simulation results of the proposed method (PSO-H∞) are compared with the conventional sliding mode control (SMC). The comparison results reveal that the proposed controller is more effective in reducing the tracking error and chattering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信