Penelope:点对点电源管理

Tapan Srivastava, Huazhe Zhang, H. Hoffmann
{"title":"Penelope:点对点电源管理","authors":"Tapan Srivastava, Huazhe Zhang, H. Hoffmann","doi":"10.1145/3545008.3545047","DOIUrl":null,"url":null,"abstract":"Large scale distributed computing setups rely on power management systems to enforce tight power budgets. Existing systems use a central authority that redistributes excess power to power-hungry nodes. This central authority, however, is both a single point of failure and a critical bottleneck—especially at large scale. To address these limitations we propose Penelope, a distributed power management system which shifts power through peer-to-peer transactions, ensuring that it remains robust in faulty environments and at large scale. We implement Penelope and compare its achieved performance to SLURM, a centralized power manager, under a variety of power budgets. We find that under normal conditions SLURM and Penelope achieve almost equivalent performance; however in faulty environments, Penelope achieves 8–15% mean application performance gains over SLURM. At large scale and with increasing frequency of messages, Penelope maintains its performance in contrast to centralized approaches which degrade and become unusable.","PeriodicalId":360504,"journal":{"name":"Proceedings of the 51st International Conference on Parallel Processing","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Penelope: Peer-to-peer Power Management\",\"authors\":\"Tapan Srivastava, Huazhe Zhang, H. Hoffmann\",\"doi\":\"10.1145/3545008.3545047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large scale distributed computing setups rely on power management systems to enforce tight power budgets. Existing systems use a central authority that redistributes excess power to power-hungry nodes. This central authority, however, is both a single point of failure and a critical bottleneck—especially at large scale. To address these limitations we propose Penelope, a distributed power management system which shifts power through peer-to-peer transactions, ensuring that it remains robust in faulty environments and at large scale. We implement Penelope and compare its achieved performance to SLURM, a centralized power manager, under a variety of power budgets. We find that under normal conditions SLURM and Penelope achieve almost equivalent performance; however in faulty environments, Penelope achieves 8–15% mean application performance gains over SLURM. At large scale and with increasing frequency of messages, Penelope maintains its performance in contrast to centralized approaches which degrade and become unusable.\",\"PeriodicalId\":360504,\"journal\":{\"name\":\"Proceedings of the 51st International Conference on Parallel Processing\",\"volume\":\"120 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 51st International Conference on Parallel Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3545008.3545047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 51st International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3545008.3545047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

大型分布式计算设置依赖于电源管理系统来执行严格的电源预算。现有的系统使用一个中央机构,将多余的电力重新分配给耗电的节点。然而,这个中央权威既是一个单点故障,也是一个关键的瓶颈——尤其是在大规模的情况下。为了解决这些限制,我们提出了Penelope,这是一种分布式电源管理系统,通过点对点交易转移电源,确保它在故障环境和大规模中保持健壮。我们实现了Penelope,并将其实现的性能与SLURM(一种集中式电源管理器)在各种功率预算下的性能进行了比较。我们发现在正常情况下,SLURM和Penelope的性能几乎相当;然而,在故障环境中,Penelope比SLURM实现了8-15%的平均应用性能提升。在大规模和增加消息频率的情况下,Penelope保持其性能,而集中式方法会降低并变得不可用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Penelope: Peer-to-peer Power Management
Large scale distributed computing setups rely on power management systems to enforce tight power budgets. Existing systems use a central authority that redistributes excess power to power-hungry nodes. This central authority, however, is both a single point of failure and a critical bottleneck—especially at large scale. To address these limitations we propose Penelope, a distributed power management system which shifts power through peer-to-peer transactions, ensuring that it remains robust in faulty environments and at large scale. We implement Penelope and compare its achieved performance to SLURM, a centralized power manager, under a variety of power budgets. We find that under normal conditions SLURM and Penelope achieve almost equivalent performance; however in faulty environments, Penelope achieves 8–15% mean application performance gains over SLURM. At large scale and with increasing frequency of messages, Penelope maintains its performance in contrast to centralized approaches which degrade and become unusable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信