讲座中注意力的个性化索引——要求与概念

Sebastian Pospiech, N. Birnbaum, L. Knipping, R. Mertens
{"title":"讲座中注意力的个性化索引——要求与概念","authors":"Sebastian Pospiech, N. Birnbaum, L. Knipping, R. Mertens","doi":"10.1109/ISM.2015.44","DOIUrl":null,"url":null,"abstract":"Web lectures can be employed in a variety of didactic scenarios ranging from add-on for a live lecture to stand-alone learning content. In all of these scenarios, though less in the stand-alone one, indexing and navigation are crucial for real world usability. As a consequence, many approaches like slide based indexing, transcript based indexing, collaborative manual indexing as well as individual or social indexing based on viewing behavior have been devised. The approach proposed in this paper takes individual indexing based on viewing behavior two steps further in that (a) indexes the recording at production time in the lecture hall and (b) actively analyzes the students attention focus instead of passively recording viewing time as done in conventional footprinting. In order to track student attention during the lecture, recoding and analyzing the student's behaviour in parallel to the lecture as well as synchronizing both data streams is necessary. This paper discusses the architecture required for personalized attention based indexing, possible problems and strategies to tackle them.","PeriodicalId":250353,"journal":{"name":"2015 IEEE International Symposium on Multimedia (ISM)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Personalized Indexing of Attention in Lectures -- Requirements and Concept\",\"authors\":\"Sebastian Pospiech, N. Birnbaum, L. Knipping, R. Mertens\",\"doi\":\"10.1109/ISM.2015.44\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Web lectures can be employed in a variety of didactic scenarios ranging from add-on for a live lecture to stand-alone learning content. In all of these scenarios, though less in the stand-alone one, indexing and navigation are crucial for real world usability. As a consequence, many approaches like slide based indexing, transcript based indexing, collaborative manual indexing as well as individual or social indexing based on viewing behavior have been devised. The approach proposed in this paper takes individual indexing based on viewing behavior two steps further in that (a) indexes the recording at production time in the lecture hall and (b) actively analyzes the students attention focus instead of passively recording viewing time as done in conventional footprinting. In order to track student attention during the lecture, recoding and analyzing the student's behaviour in parallel to the lecture as well as synchronizing both data streams is necessary. This paper discusses the architecture required for personalized attention based indexing, possible problems and strategies to tackle them.\",\"PeriodicalId\":250353,\"journal\":{\"name\":\"2015 IEEE International Symposium on Multimedia (ISM)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Symposium on Multimedia (ISM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISM.2015.44\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Symposium on Multimedia (ISM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2015.44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

网络讲座可以用于各种教学场景,从现场讲座的附加内容到独立的学习内容。在所有这些场景中,索引和导航对于现实世界的可用性至关重要,尽管在独立场景中较少。因此,许多方法,如基于幻灯片的索引,基于文本的索引,协作手动索引以及基于观看行为的个人或社会索引已经被设计出来。本文提出的方法将基于观看行为的个体索引向前推进了两步,即(a)在演讲厅的录制时间索引,(b)主动分析学生的注意力焦点,而不是像传统的足迹那样被动记录观看时间。为了在讲座期间跟踪学生的注意力,在讲课的同时重新编码和分析学生的行为以及同步两个数据流是必要的。本文讨论了个性化关注索引所需的体系结构、可能存在的问题以及解决这些问题的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Personalized Indexing of Attention in Lectures -- Requirements and Concept
Web lectures can be employed in a variety of didactic scenarios ranging from add-on for a live lecture to stand-alone learning content. In all of these scenarios, though less in the stand-alone one, indexing and navigation are crucial for real world usability. As a consequence, many approaches like slide based indexing, transcript based indexing, collaborative manual indexing as well as individual or social indexing based on viewing behavior have been devised. The approach proposed in this paper takes individual indexing based on viewing behavior two steps further in that (a) indexes the recording at production time in the lecture hall and (b) actively analyzes the students attention focus instead of passively recording viewing time as done in conventional footprinting. In order to track student attention during the lecture, recoding and analyzing the student's behaviour in parallel to the lecture as well as synchronizing both data streams is necessary. This paper discusses the architecture required for personalized attention based indexing, possible problems and strategies to tackle them.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信