{"title":"基于低差异序列的混合差分进化图像分割","authors":"A. Nakib, B. Daachi, P. Siarry","doi":"10.1109/IPDPSW.2012.79","DOIUrl":null,"url":null,"abstract":"The image thresholding problem can be seen as a problem of optimization of an objective function. Many thresholding techniques have been proposed in the literature and the approximation of normalized histogram of an image by a mixture of Gaussian distributions is one of them. Typically, finding the parameters of Gaussian distributions leads to a nonlinear optimization problem, of which solution is computationally expensive and time-consuming. In this paper, an enhanced version of the classical differential evolution algorithm using low-discrepancy sequences and a local search, called LDE, is used to compute these parameters. Experimental results demonstrate the ability of the algorithm in finding optimal thresholds in case of multilevel thresholding.","PeriodicalId":378335,"journal":{"name":"2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Hybrid Differential Evolution Using Low-Discrepancy Sequences for Image Segmentation\",\"authors\":\"A. Nakib, B. Daachi, P. Siarry\",\"doi\":\"10.1109/IPDPSW.2012.79\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The image thresholding problem can be seen as a problem of optimization of an objective function. Many thresholding techniques have been proposed in the literature and the approximation of normalized histogram of an image by a mixture of Gaussian distributions is one of them. Typically, finding the parameters of Gaussian distributions leads to a nonlinear optimization problem, of which solution is computationally expensive and time-consuming. In this paper, an enhanced version of the classical differential evolution algorithm using low-discrepancy sequences and a local search, called LDE, is used to compute these parameters. Experimental results demonstrate the ability of the algorithm in finding optimal thresholds in case of multilevel thresholding.\",\"PeriodicalId\":378335,\"journal\":{\"name\":\"2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPSW.2012.79\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2012.79","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hybrid Differential Evolution Using Low-Discrepancy Sequences for Image Segmentation
The image thresholding problem can be seen as a problem of optimization of an objective function. Many thresholding techniques have been proposed in the literature and the approximation of normalized histogram of an image by a mixture of Gaussian distributions is one of them. Typically, finding the parameters of Gaussian distributions leads to a nonlinear optimization problem, of which solution is computationally expensive and time-consuming. In this paper, an enhanced version of the classical differential evolution algorithm using low-discrepancy sequences and a local search, called LDE, is used to compute these parameters. Experimental results demonstrate the ability of the algorithm in finding optimal thresholds in case of multilevel thresholding.