利用Naïve贝叶斯算法和主成分分析(PCA)对时间序列数据的毕业预测

Wishnu Dwi Herlambang, K. A. Laksitowening, I. Asror
{"title":"利用Naïve贝叶斯算法和主成分分析(PCA)对时间序列数据的毕业预测","authors":"Wishnu Dwi Herlambang, K. A. Laksitowening, I. Asror","doi":"10.1109/ICoICT52021.2021.9527443","DOIUrl":null,"url":null,"abstract":"The percentage of students who graduated on time can be predicted with data mining methods. This research aims to provide earlier information regarding students who are at risk of not graduating on time. Thus, the study program can take appropriate action before it is too late. Several classification methods can be used for prediction. Our research combines Naïve Bayes with Principal Component Analysis (PCA). PCA is used to simplify complex academic data. The PCA result has a more straightforward structure to be processed using Naive Bayes classification. This research uses four batches of student academic performance data in Informatics Study Program, Telkom University. The dataset is partitioned by academic year to obtain time-series data of each student. The combination of PCA and Naïve Bayes algorithms obtained better results than classification using Naïve Bayes only, with 6.04% higher accuracy on average.","PeriodicalId":191671,"journal":{"name":"2021 9th International Conference on Information and Communication Technology (ICoICT)","volume":"1021 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Prediction of Graduation with Naïve Bayes Algorithm and Principal Component Analysis (PCA) on Time Series Data\",\"authors\":\"Wishnu Dwi Herlambang, K. A. Laksitowening, I. Asror\",\"doi\":\"10.1109/ICoICT52021.2021.9527443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The percentage of students who graduated on time can be predicted with data mining methods. This research aims to provide earlier information regarding students who are at risk of not graduating on time. Thus, the study program can take appropriate action before it is too late. Several classification methods can be used for prediction. Our research combines Naïve Bayes with Principal Component Analysis (PCA). PCA is used to simplify complex academic data. The PCA result has a more straightforward structure to be processed using Naive Bayes classification. This research uses four batches of student academic performance data in Informatics Study Program, Telkom University. The dataset is partitioned by academic year to obtain time-series data of each student. The combination of PCA and Naïve Bayes algorithms obtained better results than classification using Naïve Bayes only, with 6.04% higher accuracy on average.\",\"PeriodicalId\":191671,\"journal\":{\"name\":\"2021 9th International Conference on Information and Communication Technology (ICoICT)\",\"volume\":\"1021 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 9th International Conference on Information and Communication Technology (ICoICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICoICT52021.2021.9527443\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 9th International Conference on Information and Communication Technology (ICoICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICoICT52021.2021.9527443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

学生按时毕业的比例可以用数据挖掘方法来预测。这项研究的目的是提供关于那些有不能按时毕业风险的学生的早期信息。因此,学习计划可以在为时已晚之前采取适当的行动。有几种分类方法可用于预测。我们的研究结合Naïve贝叶斯与主成分分析(PCA)。主成分分析用于简化复杂的学术数据。PCA结果具有更直接的结构,可以使用朴素贝叶斯分类进行处理。本研究使用电信大学信息学研究计划四批学生学业成绩数据。数据集按学年划分,得到每个学生的时间序列数据。主成分分析与Naïve贝叶斯算法的结合比仅使用Naïve贝叶斯算法的分类效果更好,平均准确率提高了6.04%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of Graduation with Naïve Bayes Algorithm and Principal Component Analysis (PCA) on Time Series Data
The percentage of students who graduated on time can be predicted with data mining methods. This research aims to provide earlier information regarding students who are at risk of not graduating on time. Thus, the study program can take appropriate action before it is too late. Several classification methods can be used for prediction. Our research combines Naïve Bayes with Principal Component Analysis (PCA). PCA is used to simplify complex academic data. The PCA result has a more straightforward structure to be processed using Naive Bayes classification. This research uses four batches of student academic performance data in Informatics Study Program, Telkom University. The dataset is partitioned by academic year to obtain time-series data of each student. The combination of PCA and Naïve Bayes algorithms obtained better results than classification using Naïve Bayes only, with 6.04% higher accuracy on average.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信