心电生物信号的压缩采样:量化噪声和稀疏性考虑

Emily G. Allstot, Andrew Y. Chen, Anna M. R. Dixon, Daibashish Gangopadhyay, D. Allstot
{"title":"心电生物信号的压缩采样:量化噪声和稀疏性考虑","authors":"Emily G. Allstot, Andrew Y. Chen, Anna M. R. Dixon, Daibashish Gangopadhyay, D. Allstot","doi":"10.1109/BIOCAS.2010.5709566","DOIUrl":null,"url":null,"abstract":"Compressed sensing (CS) is an emerging signal processing paradigm that enables the sub-Nyquist processing of sparse signals; i.e., signals with significant redundancy. Electrocardiogram (ECG) signals show significant time-domain sparsity that can be exploited using CS techniques to reduce energy consumption in an adaptive data acquisition scheme. A measurement matrix of random values is central to CS computation. Signal-to-quantization noise ratio (SQNR) results with ECG signals show that 5- and 6-bit Gaussian random coefficients are sufficient for compression factors up to 6X and from 8X-16X, respectively, whereas 6-bit uniform random coefficients are needed for 2X-16X compression ratios.","PeriodicalId":440499,"journal":{"name":"2010 Biomedical Circuits and Systems Conference (BioCAS)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":"{\"title\":\"Compressive sampling of ECG bio-signals: Quantization noise and sparsity considerations\",\"authors\":\"Emily G. Allstot, Andrew Y. Chen, Anna M. R. Dixon, Daibashish Gangopadhyay, D. Allstot\",\"doi\":\"10.1109/BIOCAS.2010.5709566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compressed sensing (CS) is an emerging signal processing paradigm that enables the sub-Nyquist processing of sparse signals; i.e., signals with significant redundancy. Electrocardiogram (ECG) signals show significant time-domain sparsity that can be exploited using CS techniques to reduce energy consumption in an adaptive data acquisition scheme. A measurement matrix of random values is central to CS computation. Signal-to-quantization noise ratio (SQNR) results with ECG signals show that 5- and 6-bit Gaussian random coefficients are sufficient for compression factors up to 6X and from 8X-16X, respectively, whereas 6-bit uniform random coefficients are needed for 2X-16X compression ratios.\",\"PeriodicalId\":440499,\"journal\":{\"name\":\"2010 Biomedical Circuits and Systems Conference (BioCAS)\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Biomedical Circuits and Systems Conference (BioCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOCAS.2010.5709566\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Biomedical Circuits and Systems Conference (BioCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2010.5709566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

摘要

压缩感知(CS)是一种新兴的信号处理范式,能够对稀疏信号进行亚奈奎斯特处理;即,具有显著冗余的信号。心电图(ECG)信号显示出显著的时域稀疏性,可以利用CS技术在自适应数据采集方案中降低能耗。随机值的测量矩阵是CS计算的核心。心电信号的信量化噪声比(SQNR)结果表明,5位和6位高斯随机系数分别足以用于高达6X和8X-16X的压缩因子,而6位均匀随机系数则需要用于2X-16X的压缩比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compressive sampling of ECG bio-signals: Quantization noise and sparsity considerations
Compressed sensing (CS) is an emerging signal processing paradigm that enables the sub-Nyquist processing of sparse signals; i.e., signals with significant redundancy. Electrocardiogram (ECG) signals show significant time-domain sparsity that can be exploited using CS techniques to reduce energy consumption in an adaptive data acquisition scheme. A measurement matrix of random values is central to CS computation. Signal-to-quantization noise ratio (SQNR) results with ECG signals show that 5- and 6-bit Gaussian random coefficients are sufficient for compression factors up to 6X and from 8X-16X, respectively, whereas 6-bit uniform random coefficients are needed for 2X-16X compression ratios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信