利用数字工具监督美国抵押贷款市场

Li Chang, Richard Koss
{"title":"利用数字工具监督美国抵押贷款市场","authors":"Li Chang, Richard Koss","doi":"10.2139/ssrn.3362477","DOIUrl":null,"url":null,"abstract":"The US mortgage market is of paramount economic and financial importance. While the causes of the Global Financial Crisis (GFC) remain a subject of vigorous debate, lax lending standards and opacity surrounding innovations in securitization are often cited as central issues. A decade following the Global Financial Crisis, we have demonstrated that digital tools have been developed in the mortgage space that have the potential to allow investors to form a clear view of the investment risks and opportunities, and policymakers to design regulations with a complete view of the behavior of all participants: borrowers, underwriters, servicers and investors. While big data tools have been around for an extended period, it is only recently that advanced techniques have come to the market that allow for more cost-effective analysis. The latest enhancement is the application of AI to this data to unify the information across disparate data sets. We have seen demonstrations of the power of these techniques in analyzing business models for financial institutions, and for informing policymakers about the implications of their decisions across broad categories of actors in this market. Looking ahead, the analysis performed here can be extended by matching loans across time as well as between different data sets, and through applications to different markets and countries.","PeriodicalId":406666,"journal":{"name":"Applied Computing eJournal","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Utilizing Digital Tools for the Surveillance of the US Mortgage Market\",\"authors\":\"Li Chang, Richard Koss\",\"doi\":\"10.2139/ssrn.3362477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The US mortgage market is of paramount economic and financial importance. While the causes of the Global Financial Crisis (GFC) remain a subject of vigorous debate, lax lending standards and opacity surrounding innovations in securitization are often cited as central issues. A decade following the Global Financial Crisis, we have demonstrated that digital tools have been developed in the mortgage space that have the potential to allow investors to form a clear view of the investment risks and opportunities, and policymakers to design regulations with a complete view of the behavior of all participants: borrowers, underwriters, servicers and investors. While big data tools have been around for an extended period, it is only recently that advanced techniques have come to the market that allow for more cost-effective analysis. The latest enhancement is the application of AI to this data to unify the information across disparate data sets. We have seen demonstrations of the power of these techniques in analyzing business models for financial institutions, and for informing policymakers about the implications of their decisions across broad categories of actors in this market. Looking ahead, the analysis performed here can be extended by matching loans across time as well as between different data sets, and through applications to different markets and countries.\",\"PeriodicalId\":406666,\"journal\":{\"name\":\"Applied Computing eJournal\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computing eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3362477\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3362477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

美国抵押贷款市场对经济和金融至关重要。虽然全球金融危机(GFC)的起因仍然是一个激烈辩论的主题,但围绕证券化创新的宽松贷款标准和不透明通常被认为是核心问题。在全球金融危机爆发十年后,我们已经证明,抵押贷款领域已经开发出数字工具,这些工具有可能使投资者对投资风险和机会形成清晰的认识,并使政策制定者能够在全面了解所有参与者(借款人、承销商、服务人员和投资者)行为的情况下设计法规。虽然大数据工具已经存在了很长一段时间,但直到最近才有先进的技术进入市场,使分析更具成本效益。最新的改进是将人工智能应用于这些数据,以统一不同数据集的信息。我们已经看到了这些技术在分析金融机构商业模式方面的力量,以及在向政策制定者通报他们的决策对这个市场中广泛类别参与者的影响方面的力量。展望未来,可以通过在不同时间、不同数据集之间以及不同市场和国家的应用程序对贷款进行匹配来扩展这里所进行的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Utilizing Digital Tools for the Surveillance of the US Mortgage Market
The US mortgage market is of paramount economic and financial importance. While the causes of the Global Financial Crisis (GFC) remain a subject of vigorous debate, lax lending standards and opacity surrounding innovations in securitization are often cited as central issues. A decade following the Global Financial Crisis, we have demonstrated that digital tools have been developed in the mortgage space that have the potential to allow investors to form a clear view of the investment risks and opportunities, and policymakers to design regulations with a complete view of the behavior of all participants: borrowers, underwriters, servicers and investors. While big data tools have been around for an extended period, it is only recently that advanced techniques have come to the market that allow for more cost-effective analysis. The latest enhancement is the application of AI to this data to unify the information across disparate data sets. We have seen demonstrations of the power of these techniques in analyzing business models for financial institutions, and for informing policymakers about the implications of their decisions across broad categories of actors in this market. Looking ahead, the analysis performed here can be extended by matching loans across time as well as between different data sets, and through applications to different markets and countries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信