{"title":"一种基于PU学习的关系预测方法","authors":"Gao-Jing Peng, Ke-Jia Chen, Shijun Xue, Bin Liu","doi":"10.1109/ISKE.2017.8258752","DOIUrl":null,"url":null,"abstract":"This paper studies relation prediction in heterogeneous information networks under PU learning context. One of the challenges of this problem is the imbalance of data number between the positive set P (the set of node pairs with the target relation) and the unlabeled set U (the set of node pairs without the target relation). We propose a K-means and voting mechanism based technique SemiPUclus to extract the reliable negative set RN from U under a new relation prediction framework PURP. The experimental results show that PURP achieves better performance than comparative methods in DBLP co-authorship network data.","PeriodicalId":208009,"journal":{"name":"2017 12th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A relation prediction method based on PU learning\",\"authors\":\"Gao-Jing Peng, Ke-Jia Chen, Shijun Xue, Bin Liu\",\"doi\":\"10.1109/ISKE.2017.8258752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies relation prediction in heterogeneous information networks under PU learning context. One of the challenges of this problem is the imbalance of data number between the positive set P (the set of node pairs with the target relation) and the unlabeled set U (the set of node pairs without the target relation). We propose a K-means and voting mechanism based technique SemiPUclus to extract the reliable negative set RN from U under a new relation prediction framework PURP. The experimental results show that PURP achieves better performance than comparative methods in DBLP co-authorship network data.\",\"PeriodicalId\":208009,\"journal\":{\"name\":\"2017 12th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 12th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISKE.2017.8258752\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 12th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISKE.2017.8258752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper studies relation prediction in heterogeneous information networks under PU learning context. One of the challenges of this problem is the imbalance of data number between the positive set P (the set of node pairs with the target relation) and the unlabeled set U (the set of node pairs without the target relation). We propose a K-means and voting mechanism based technique SemiPUclus to extract the reliable negative set RN from U under a new relation prediction framework PURP. The experimental results show that PURP achieves better performance than comparative methods in DBLP co-authorship network data.