计算动词决策树的训练算法

Juanjuan Sun, Tao Yang
{"title":"计算动词决策树的训练算法","authors":"Juanjuan Sun, Tao Yang","doi":"10.1109/ICASID.2010.5551334","DOIUrl":null,"url":null,"abstract":"In this paper, an algorithm of learning computational verb decision trees (verb trees, for short) from training examples base on impact factors, which are calculated by using computational verb similarities, is presented. Some examples are used to show the creation of verb decision tree and the usefulness of verb decision trees. Examples are used to show that verb decision trees are powerful tools to generalize and extract knowledge from both historical records and Boolean logical records","PeriodicalId":391931,"journal":{"name":"2010 International Conference on Anti-Counterfeiting, Security and Identification","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A training algorithm of computational verb decision trees\",\"authors\":\"Juanjuan Sun, Tao Yang\",\"doi\":\"10.1109/ICASID.2010.5551334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an algorithm of learning computational verb decision trees (verb trees, for short) from training examples base on impact factors, which are calculated by using computational verb similarities, is presented. Some examples are used to show the creation of verb decision tree and the usefulness of verb decision trees. Examples are used to show that verb decision trees are powerful tools to generalize and extract knowledge from both historical records and Boolean logical records\",\"PeriodicalId\":391931,\"journal\":{\"name\":\"2010 International Conference on Anti-Counterfeiting, Security and Identification\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Anti-Counterfeiting, Security and Identification\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASID.2010.5551334\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Anti-Counterfeiting, Security and Identification","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASID.2010.5551334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于影响因子的训练样例学习计算动词决策树(以下简称动词树)的算法,影响因子是通过计算动词相似度来计算的。通过一些例子说明了动词决策树的创建和动词决策树的实用性。实例表明,动词决策树是从历史记录和布尔逻辑记录中概括和提取知识的强大工具
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A training algorithm of computational verb decision trees
In this paper, an algorithm of learning computational verb decision trees (verb trees, for short) from training examples base on impact factors, which are calculated by using computational verb similarities, is presented. Some examples are used to show the creation of verb decision tree and the usefulness of verb decision trees. Examples are used to show that verb decision trees are powerful tools to generalize and extract knowledge from both historical records and Boolean logical records
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信