{"title":"低坝水库水动力学三维CFD模拟","authors":"Aleksandra Ziemińska-Stolarska","doi":"10.5772/INTECHOPEN.80377","DOIUrl":null,"url":null,"abstract":"This chapter deals with the processes by which a single-phase 3-D CFD model of hydrodynamics in a Sulejow dam reservoir was developed, verified, and tested. A simplified volume of fluid (VOF) model of flow was elaborated to determine the effect of wind on hydrodynamics in the lake. A hexahedral mesh with over 17 million elements and a k-? SST turbulence model were defined for single-phase simulations in steady-state conditions. The model was verified on the basis of the extensive hydrodynamic measurements. Excellent agreement (average error of less than 10%) between computed and measured velocity profiles was found. The simulation results proved a strong effect of wind on hydrodynamics, especially on the development of the water circulation pattern in the lacustrine zone in the lake.","PeriodicalId":354671,"journal":{"name":"Dam Engineering","volume":"518 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-Dimensional CFD Simulations of Hydrodynamics for the Lowland Dam Reservoir\",\"authors\":\"Aleksandra Ziemińska-Stolarska\",\"doi\":\"10.5772/INTECHOPEN.80377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter deals with the processes by which a single-phase 3-D CFD model of hydrodynamics in a Sulejow dam reservoir was developed, verified, and tested. A simplified volume of fluid (VOF) model of flow was elaborated to determine the effect of wind on hydrodynamics in the lake. A hexahedral mesh with over 17 million elements and a k-? SST turbulence model were defined for single-phase simulations in steady-state conditions. The model was verified on the basis of the extensive hydrodynamic measurements. Excellent agreement (average error of less than 10%) between computed and measured velocity profiles was found. The simulation results proved a strong effect of wind on hydrodynamics, especially on the development of the water circulation pattern in the lacustrine zone in the lake.\",\"PeriodicalId\":354671,\"journal\":{\"name\":\"Dam Engineering\",\"volume\":\"518 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dam Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.80377\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dam Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.80377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Three-Dimensional CFD Simulations of Hydrodynamics for the Lowland Dam Reservoir
This chapter deals with the processes by which a single-phase 3-D CFD model of hydrodynamics in a Sulejow dam reservoir was developed, verified, and tested. A simplified volume of fluid (VOF) model of flow was elaborated to determine the effect of wind on hydrodynamics in the lake. A hexahedral mesh with over 17 million elements and a k-? SST turbulence model were defined for single-phase simulations in steady-state conditions. The model was verified on the basis of the extensive hydrodynamic measurements. Excellent agreement (average error of less than 10%) between computed and measured velocity profiles was found. The simulation results proved a strong effect of wind on hydrodynamics, especially on the development of the water circulation pattern in the lacustrine zone in the lake.