基于特征向量的混合系统模式识别算法比较

Q. Tian, Y. Fainman, S. H. Lee
{"title":"基于特征向量的混合系统模式识别算法比较","authors":"Q. Tian, Y. Fainman, S. H. Lee","doi":"10.1109/ICPR.1988.28288","DOIUrl":null,"url":null,"abstract":"Pattern recognition algorithms based on eigenvalue analysis for hybrid processing (optical-digital computer) are theoretically and experimentally compared. These algorithms consist of the Foley-Sammon (F-S) transform, Hotelling trace criterion (HTC), Fukunaga-Koontz (F-K) transform, linear discriminant function (LDF), and generalized matched filter (GMF). It is shown that all these algorithms can be represented in a generalized eigenvector form, and that they differ in the ways in which they utilize the correlation matrices (F-K) or covariance matrices (F-S, HTC, etc.) to calculate the discriminant vectors. Some methods classify the images, or, instead, features of the images, in a reduced dimension. The above algorithms are tested experimentally by using 20 training images and 10 test images, all with 64*64 pixels.<<ETX>>","PeriodicalId":314236,"journal":{"name":"[1988 Proceedings] 9th International Conference on Pattern Recognition","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of eigenvector-based pattern recognition algorithms for hybrid systems\",\"authors\":\"Q. Tian, Y. Fainman, S. H. Lee\",\"doi\":\"10.1109/ICPR.1988.28288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pattern recognition algorithms based on eigenvalue analysis for hybrid processing (optical-digital computer) are theoretically and experimentally compared. These algorithms consist of the Foley-Sammon (F-S) transform, Hotelling trace criterion (HTC), Fukunaga-Koontz (F-K) transform, linear discriminant function (LDF), and generalized matched filter (GMF). It is shown that all these algorithms can be represented in a generalized eigenvector form, and that they differ in the ways in which they utilize the correlation matrices (F-K) or covariance matrices (F-S, HTC, etc.) to calculate the discriminant vectors. Some methods classify the images, or, instead, features of the images, in a reduced dimension. The above algorithms are tested experimentally by using 20 training images and 10 test images, all with 64*64 pixels.<<ETX>>\",\"PeriodicalId\":314236,\"journal\":{\"name\":\"[1988 Proceedings] 9th International Conference on Pattern Recognition\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1988 Proceedings] 9th International Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.1988.28288\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1988 Proceedings] 9th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.1988.28288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对基于特征值分析的模式识别算法进行了理论和实验比较。这些算法包括Foley-Sammon (F-S)变换、Hotelling跟踪准则(HTC)、Fukunaga-Koontz (F-K)变换、线性判别函数(LDF)和广义匹配滤波器(GMF)。结果表明,所有这些算法都可以用广义特征向量形式表示,并且它们利用相关矩阵(F-K)或协方差矩阵(F-S, HTC等)计算判别向量的方式不同。有些方法在降维中对图像进行分类,或者对图像的特征进行分类。采用20张训练图像和10张测试图像,均为64*64像素,对上述算法进行了实验测试
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of eigenvector-based pattern recognition algorithms for hybrid systems
Pattern recognition algorithms based on eigenvalue analysis for hybrid processing (optical-digital computer) are theoretically and experimentally compared. These algorithms consist of the Foley-Sammon (F-S) transform, Hotelling trace criterion (HTC), Fukunaga-Koontz (F-K) transform, linear discriminant function (LDF), and generalized matched filter (GMF). It is shown that all these algorithms can be represented in a generalized eigenvector form, and that they differ in the ways in which they utilize the correlation matrices (F-K) or covariance matrices (F-S, HTC, etc.) to calculate the discriminant vectors. Some methods classify the images, or, instead, features of the images, in a reduced dimension. The above algorithms are tested experimentally by using 20 training images and 10 test images, all with 64*64 pixels.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信