{"title":"理解服务发现系统中的自我修复","authors":"Christopher E. Dabrowski, K. Mills","doi":"10.1145/582128.582132","DOIUrl":null,"url":null,"abstract":"Service-discovery systems aim to provide consistent views of distributed components under varying network conditions. To achieve this aim, designers rely upon a variety of self-healing strategies, including: architecture and topology, failure-detection and recovery techniques, and consistency maintenance mechanisms. In previous work, we showed that various combinations of self-healing strategies lead to significant differences in the ability of service-discovery systems to maintain consistency during increasing network failure. Here, we ask whether the contribution of individual self-healing strategies can be quantified. We give results that quantify the effectiveness of selected combinations of architecture-topology and recovery techniques. Our results suggest that it should prove feasible to quantify the ability of individual self-healing strategies to overcome various failures. A full understanding of the interactions among self-healing strategies would provide designers of distributed systems with the knowledge necessary to build the most effective self-healing systems with minimum overhead.","PeriodicalId":326554,"journal":{"name":"Workshop on Self-Healing Systems","volume":"10 10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"78","resultStr":"{\"title\":\"Understanding self-healing in service-discovery systems\",\"authors\":\"Christopher E. Dabrowski, K. Mills\",\"doi\":\"10.1145/582128.582132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Service-discovery systems aim to provide consistent views of distributed components under varying network conditions. To achieve this aim, designers rely upon a variety of self-healing strategies, including: architecture and topology, failure-detection and recovery techniques, and consistency maintenance mechanisms. In previous work, we showed that various combinations of self-healing strategies lead to significant differences in the ability of service-discovery systems to maintain consistency during increasing network failure. Here, we ask whether the contribution of individual self-healing strategies can be quantified. We give results that quantify the effectiveness of selected combinations of architecture-topology and recovery techniques. Our results suggest that it should prove feasible to quantify the ability of individual self-healing strategies to overcome various failures. A full understanding of the interactions among self-healing strategies would provide designers of distributed systems with the knowledge necessary to build the most effective self-healing systems with minimum overhead.\",\"PeriodicalId\":326554,\"journal\":{\"name\":\"Workshop on Self-Healing Systems\",\"volume\":\"10 10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"78\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Self-Healing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/582128.582132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Self-Healing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/582128.582132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Understanding self-healing in service-discovery systems
Service-discovery systems aim to provide consistent views of distributed components under varying network conditions. To achieve this aim, designers rely upon a variety of self-healing strategies, including: architecture and topology, failure-detection and recovery techniques, and consistency maintenance mechanisms. In previous work, we showed that various combinations of self-healing strategies lead to significant differences in the ability of service-discovery systems to maintain consistency during increasing network failure. Here, we ask whether the contribution of individual self-healing strategies can be quantified. We give results that quantify the effectiveness of selected combinations of architecture-topology and recovery techniques. Our results suggest that it should prove feasible to quantify the ability of individual self-healing strategies to overcome various failures. A full understanding of the interactions among self-healing strategies would provide designers of distributed systems with the knowledge necessary to build the most effective self-healing systems with minimum overhead.