基于ConvBiLSTM和BERT的情感分析混合框架

Abhishek Bhola, S. Athithan, Shashank Singh, S. Mittal, Yogesh Kumar Sharma, Jagjit Singh Dhatterwal
{"title":"基于ConvBiLSTM和BERT的情感分析混合框架","authors":"Abhishek Bhola, S. Athithan, Shashank Singh, S. Mittal, Yogesh Kumar Sharma, Jagjit Singh Dhatterwal","doi":"10.1109/ICTACS56270.2022.9987774","DOIUrl":null,"url":null,"abstract":"Sentiment analysis is specifically a text mining technique that utilizes natural language processing to computerize the process of analyzing text that aims to determine the sentiment expressed. The fundamental purpose of sentiment analysis is to get valuable insights that lead to all-around development in specific domains. The fantastic applications of sentimental analysis include monitoring social media, management of customer support, and customer reviews research. One of the major pitfalls in sentiment analysis is word ambiguity. To overcome this drawback, a proposed hybrid framework presented in this work is capable of dealing with such ambiguity issues. The considered evaluation parameters are accuracy, F1 score and time taken. The proposed hybrid framework utilizes Convolutional Bi-directional Long short-term memory network (ConvBiLSTM) with Bidirectional Encoder representations from Transformer (BERT) tokeniser on the given dataset and outperform other methodologies with 95.10% accuracy.","PeriodicalId":385163,"journal":{"name":"2022 2nd International Conference on Technological Advancements in Computational Sciences (ICTACS)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid Framework for Sentiment Analysis Using ConvBiLSTM and BERT\",\"authors\":\"Abhishek Bhola, S. Athithan, Shashank Singh, S. Mittal, Yogesh Kumar Sharma, Jagjit Singh Dhatterwal\",\"doi\":\"10.1109/ICTACS56270.2022.9987774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sentiment analysis is specifically a text mining technique that utilizes natural language processing to computerize the process of analyzing text that aims to determine the sentiment expressed. The fundamental purpose of sentiment analysis is to get valuable insights that lead to all-around development in specific domains. The fantastic applications of sentimental analysis include monitoring social media, management of customer support, and customer reviews research. One of the major pitfalls in sentiment analysis is word ambiguity. To overcome this drawback, a proposed hybrid framework presented in this work is capable of dealing with such ambiguity issues. The considered evaluation parameters are accuracy, F1 score and time taken. The proposed hybrid framework utilizes Convolutional Bi-directional Long short-term memory network (ConvBiLSTM) with Bidirectional Encoder representations from Transformer (BERT) tokeniser on the given dataset and outperform other methodologies with 95.10% accuracy.\",\"PeriodicalId\":385163,\"journal\":{\"name\":\"2022 2nd International Conference on Technological Advancements in Computational Sciences (ICTACS)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 2nd International Conference on Technological Advancements in Computational Sciences (ICTACS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTACS56270.2022.9987774\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Conference on Technological Advancements in Computational Sciences (ICTACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTACS56270.2022.9987774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

情感分析是一种文本挖掘技术,它利用自然语言处理将分析文本的过程计算机化,目的是确定所表达的情感。情感分析的基本目的是获得有价值的见解,从而在特定领域实现全面发展。情感分析的奇妙应用包括监控社交媒体、客户支持管理和客户评论研究。情感分析的一个主要缺陷是词语歧义。为了克服这一缺点,本文提出的混合框架能够处理这种模糊性问题。考虑的评价参数是准确性、F1分数和耗时。所提出的混合框架利用卷积双向长短期记忆网络(ConvBiLSTM)和来自Transformer (BERT)标记器的双向编码器表示在给定数据集上,并以95.10%的准确率优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid Framework for Sentiment Analysis Using ConvBiLSTM and BERT
Sentiment analysis is specifically a text mining technique that utilizes natural language processing to computerize the process of analyzing text that aims to determine the sentiment expressed. The fundamental purpose of sentiment analysis is to get valuable insights that lead to all-around development in specific domains. The fantastic applications of sentimental analysis include monitoring social media, management of customer support, and customer reviews research. One of the major pitfalls in sentiment analysis is word ambiguity. To overcome this drawback, a proposed hybrid framework presented in this work is capable of dealing with such ambiguity issues. The considered evaluation parameters are accuracy, F1 score and time taken. The proposed hybrid framework utilizes Convolutional Bi-directional Long short-term memory network (ConvBiLSTM) with Bidirectional Encoder representations from Transformer (BERT) tokeniser on the given dataset and outperform other methodologies with 95.10% accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信