基于垂直定量挖掘的YouTube热门视频社交网络分析

Adam G. M. Pazdor, C. Leung, Thomas J. Czubryt, Junyi Lu, Denys Popov, Sanskar Raval
{"title":"基于垂直定量挖掘的YouTube热门视频社交网络分析","authors":"Adam G. M. Pazdor, C. Leung, Thomas J. Czubryt, Junyi Lu, Denys Popov, Sanskar Raval","doi":"10.1109/ASONAM55673.2022.10068640","DOIUrl":null,"url":null,"abstract":"Frequent itemset (or frequent pattern) mining is a technique used in big data mining to discover frequently occurring sets of items (such as popular co-purchased merchandise) and has numerous applications in the field of databases. Traditional frequent pattern mining algorithms only look at Boolean mining; that is, considering only the presence or absence of an item in an itemset. In this paper, we present an algorithm for mining interesting quantitative frequent patterns. Our qEclat (or Q-Eclat) algorithm extends the common Eclat algorithm to be able to vertically mine quantitative patterns. When compared with the existing MQA-M algorithm (which was built for quantitative horizontal frequent pattern mining), our evaluation results show that qEclat mines quantitative frequent patterns faster.","PeriodicalId":423113,"journal":{"name":"2022 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","volume":"45 9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Social Network Analysis of Popular YouTube Videos via Vertical Quantitative Mining\",\"authors\":\"Adam G. M. Pazdor, C. Leung, Thomas J. Czubryt, Junyi Lu, Denys Popov, Sanskar Raval\",\"doi\":\"10.1109/ASONAM55673.2022.10068640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Frequent itemset (or frequent pattern) mining is a technique used in big data mining to discover frequently occurring sets of items (such as popular co-purchased merchandise) and has numerous applications in the field of databases. Traditional frequent pattern mining algorithms only look at Boolean mining; that is, considering only the presence or absence of an item in an itemset. In this paper, we present an algorithm for mining interesting quantitative frequent patterns. Our qEclat (or Q-Eclat) algorithm extends the common Eclat algorithm to be able to vertically mine quantitative patterns. When compared with the existing MQA-M algorithm (which was built for quantitative horizontal frequent pattern mining), our evaluation results show that qEclat mines quantitative frequent patterns faster.\",\"PeriodicalId\":423113,\"journal\":{\"name\":\"2022 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)\",\"volume\":\"45 9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASONAM55673.2022.10068640\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASONAM55673.2022.10068640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

频繁项目集(或频繁模式)挖掘是一种用于大数据挖掘的技术,用于发现频繁出现的项目集(如流行的共同购买的商品),在数据库领域有许多应用。传统的频繁模式挖掘算法只关注布尔挖掘;也就是说,只考虑一个项目集中是否存在一个项目。本文提出了一种挖掘有趣的定量频繁模式的算法。我们的qEclat(或Q-Eclat)算法扩展了通用的Eclat算法,能够垂直挖掘定量模式。与现有的MQA-M算法(为定量水平频繁模式挖掘而构建)相比,我们的评估结果表明,qEclat可以更快地挖掘定量频繁模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Social Network Analysis of Popular YouTube Videos via Vertical Quantitative Mining
Frequent itemset (or frequent pattern) mining is a technique used in big data mining to discover frequently occurring sets of items (such as popular co-purchased merchandise) and has numerous applications in the field of databases. Traditional frequent pattern mining algorithms only look at Boolean mining; that is, considering only the presence or absence of an item in an itemset. In this paper, we present an algorithm for mining interesting quantitative frequent patterns. Our qEclat (or Q-Eclat) algorithm extends the common Eclat algorithm to be able to vertically mine quantitative patterns. When compared with the existing MQA-M algorithm (which was built for quantitative horizontal frequent pattern mining), our evaluation results show that qEclat mines quantitative frequent patterns faster.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信