{"title":"一个紧凑的低功率水下磁感应调制解调器","authors":"Yibin Wang, Andrew Dobbin, Jean-François Bousquet","doi":"10.1145/2999504.3001064","DOIUrl":null,"url":null,"abstract":"In this work, a magneto inductive (MI) link design is studied to achieve high speed transmission applied to a high density underwater network. For a small loop antenna, a design procedure is described to define the optimal operating frequency constrained on the system bandwidth and range. A coherent link is established between two nodes in a controlled underwater environment. For a small coil with radius of 5 cm, simulation results indicate that a range above 10 meters can be achieved in the low frequency spectrum spanning 10 kHz to 1 MHz. The design procedure is validated through measurements in seawater: a very high output SNR equal to 31.4 dB is realized at the output of the equalizer, and in these conditions a perfectly reliable 8-kbps link is demonstrated at a center frequency of 22.5 kHz.","PeriodicalId":378624,"journal":{"name":"Proceedings of the 11th International Conference on Underwater Networks & Systems","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A compact low-power underwater magneto-inductive modem\",\"authors\":\"Yibin Wang, Andrew Dobbin, Jean-François Bousquet\",\"doi\":\"10.1145/2999504.3001064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, a magneto inductive (MI) link design is studied to achieve high speed transmission applied to a high density underwater network. For a small loop antenna, a design procedure is described to define the optimal operating frequency constrained on the system bandwidth and range. A coherent link is established between two nodes in a controlled underwater environment. For a small coil with radius of 5 cm, simulation results indicate that a range above 10 meters can be achieved in the low frequency spectrum spanning 10 kHz to 1 MHz. The design procedure is validated through measurements in seawater: a very high output SNR equal to 31.4 dB is realized at the output of the equalizer, and in these conditions a perfectly reliable 8-kbps link is demonstrated at a center frequency of 22.5 kHz.\",\"PeriodicalId\":378624,\"journal\":{\"name\":\"Proceedings of the 11th International Conference on Underwater Networks & Systems\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th International Conference on Underwater Networks & Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2999504.3001064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th International Conference on Underwater Networks & Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2999504.3001064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A compact low-power underwater magneto-inductive modem
In this work, a magneto inductive (MI) link design is studied to achieve high speed transmission applied to a high density underwater network. For a small loop antenna, a design procedure is described to define the optimal operating frequency constrained on the system bandwidth and range. A coherent link is established between two nodes in a controlled underwater environment. For a small coil with radius of 5 cm, simulation results indicate that a range above 10 meters can be achieved in the low frequency spectrum spanning 10 kHz to 1 MHz. The design procedure is validated through measurements in seawater: a very high output SNR equal to 31.4 dB is realized at the output of the equalizer, and in these conditions a perfectly reliable 8-kbps link is demonstrated at a center frequency of 22.5 kHz.