基于小波滤波器组和支持向量机的地震识别硬件友好算法

O. Saad, A. Shalaby, Koji Inoue, M. Sayed
{"title":"基于小波滤波器组和支持向量机的地震识别硬件友好算法","authors":"O. Saad, A. Shalaby, Koji Inoue, M. Sayed","doi":"10.1109/JEC-ECC.2018.8679531","DOIUrl":null,"url":null,"abstract":"Discrimination between earthquakes and explosion is one of the main challenges in the field of seismology. In some cases, the explosions recorded as an earthquake or vice verse, which can contaminate the seismic catalog. Rapid discrimination is required to support the real-time seismic application. The discrimination algorithm is based on a wavelet filter bank to extract the discriminative features, and support vector machine (SVM) as a classifier. Therefore; we propose to optimize the hardware implementation of the discrimination algorithm on Field Programmable Gate Array (FPGA). First, we implement the wavelet filter bank using optimized lifting scheme. Then, we utilize the linear classifier to implement the SVM classifier. Finally, we optimize the hardware resources of the discrimination algorithm to be utilized on low-cost FPGA called TE0711 board (Xilinx Artix7). The implemented design is utilized 1.2% and 39.8% of the FPGA's Look Up Table (LUT) and register resources, respectively.","PeriodicalId":197824,"journal":{"name":"2018 International Japan-Africa Conference on Electronics, Communications and Computations (JAC-ECC)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hardware Friendly Algorithm for Earthquakes Discrimination Based on Wavelet Filter Bank and Support Vector Machine\",\"authors\":\"O. Saad, A. Shalaby, Koji Inoue, M. Sayed\",\"doi\":\"10.1109/JEC-ECC.2018.8679531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Discrimination between earthquakes and explosion is one of the main challenges in the field of seismology. In some cases, the explosions recorded as an earthquake or vice verse, which can contaminate the seismic catalog. Rapid discrimination is required to support the real-time seismic application. The discrimination algorithm is based on a wavelet filter bank to extract the discriminative features, and support vector machine (SVM) as a classifier. Therefore; we propose to optimize the hardware implementation of the discrimination algorithm on Field Programmable Gate Array (FPGA). First, we implement the wavelet filter bank using optimized lifting scheme. Then, we utilize the linear classifier to implement the SVM classifier. Finally, we optimize the hardware resources of the discrimination algorithm to be utilized on low-cost FPGA called TE0711 board (Xilinx Artix7). The implemented design is utilized 1.2% and 39.8% of the FPGA's Look Up Table (LUT) and register resources, respectively.\",\"PeriodicalId\":197824,\"journal\":{\"name\":\"2018 International Japan-Africa Conference on Electronics, Communications and Computations (JAC-ECC)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Japan-Africa Conference on Electronics, Communications and Computations (JAC-ECC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/JEC-ECC.2018.8679531\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Japan-Africa Conference on Electronics, Communications and Computations (JAC-ECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JEC-ECC.2018.8679531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

地震与爆炸的区分是地震学领域的主要挑战之一。在某些情况下,爆炸被记录为地震,反之亦然,这可能会污染地震目录。为了支持实时地震应用,需要快速识别。该判别算法基于小波滤波器库提取判别特征,支持向量机(SVM)作为分类器。因此;我们提出在现场可编程门阵列(FPGA)上优化识别算法的硬件实现。首先,采用优化后的提升方案实现小波滤波器组。然后利用线性分类器实现支持向量机分类器。最后,我们优化了识别算法的硬件资源,使其能够在低成本的FPGA TE0711板(Xilinx Artix7)上使用。实现的设计分别利用了FPGA查找表(LUT)和寄存器资源的1.2%和39.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hardware Friendly Algorithm for Earthquakes Discrimination Based on Wavelet Filter Bank and Support Vector Machine
Discrimination between earthquakes and explosion is one of the main challenges in the field of seismology. In some cases, the explosions recorded as an earthquake or vice verse, which can contaminate the seismic catalog. Rapid discrimination is required to support the real-time seismic application. The discrimination algorithm is based on a wavelet filter bank to extract the discriminative features, and support vector machine (SVM) as a classifier. Therefore; we propose to optimize the hardware implementation of the discrimination algorithm on Field Programmable Gate Array (FPGA). First, we implement the wavelet filter bank using optimized lifting scheme. Then, we utilize the linear classifier to implement the SVM classifier. Finally, we optimize the hardware resources of the discrimination algorithm to be utilized on low-cost FPGA called TE0711 board (Xilinx Artix7). The implemented design is utilized 1.2% and 39.8% of the FPGA's Look Up Table (LUT) and register resources, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信