{"title":"在差分隐私下发布空间直方图","authors":"S. Ghane, L. Kulik, K. Ramamohanarao","doi":"10.1145/3221269.3223039","DOIUrl":null,"url":null,"abstract":"Studying trajectories of individuals has received growing interest. The aggregated movement behaviour of people provides important insights about their habits, interests, and lifestyles. Understanding and utilizing trajectory data is a crucial part of many applications such as location based services, urban planning, and traffic monitoring systems. Spatial histograms and spatial range queries are key components in such applications to efficiently store and answer queries on trajectory data. A spatial histogram maintains the sequentiality of location points in a trajectory by a strong sequential dependency among histogram cells. This dependency is an essential property in answering spatial range queries. However, the trajectories of individuals are unique and even aggregating them in spatial histograms cannot completely ensure an individual's privacy. A key technique to ensure privacy for data publishing ϵ-differential privacy as it provides a strong guarantee on an individual's provided data. Our work is the first that guarantees ϵ-differential privacy for spatial histograms on trajectories, while ensuring the sequentiality of trajectory data, i.e., its consistency. Consistency is key for any database and our proposed mechanism, PriSH, synthesizes a spatial histogram and ensures the consistency of published histogram with respect to the strong dependency constraint. In extensive experiments on real and synthetic datasets, we show that (1) PriSH is highly scalable with the dataset size and granularity of the space decomposition, (2) the distribution of aggregate trajectory information in the synthesized histogram accurately preserves the distribution of original histogram, and (3) the output has high accuracy in answering arbitrary spatial range queries.","PeriodicalId":365491,"journal":{"name":"Proceedings of the 30th International Conference on Scientific and Statistical Database Management","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Publishing spatial histograms under differential privacy\",\"authors\":\"S. Ghane, L. Kulik, K. Ramamohanarao\",\"doi\":\"10.1145/3221269.3223039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Studying trajectories of individuals has received growing interest. The aggregated movement behaviour of people provides important insights about their habits, interests, and lifestyles. Understanding and utilizing trajectory data is a crucial part of many applications such as location based services, urban planning, and traffic monitoring systems. Spatial histograms and spatial range queries are key components in such applications to efficiently store and answer queries on trajectory data. A spatial histogram maintains the sequentiality of location points in a trajectory by a strong sequential dependency among histogram cells. This dependency is an essential property in answering spatial range queries. However, the trajectories of individuals are unique and even aggregating them in spatial histograms cannot completely ensure an individual's privacy. A key technique to ensure privacy for data publishing ϵ-differential privacy as it provides a strong guarantee on an individual's provided data. Our work is the first that guarantees ϵ-differential privacy for spatial histograms on trajectories, while ensuring the sequentiality of trajectory data, i.e., its consistency. Consistency is key for any database and our proposed mechanism, PriSH, synthesizes a spatial histogram and ensures the consistency of published histogram with respect to the strong dependency constraint. In extensive experiments on real and synthetic datasets, we show that (1) PriSH is highly scalable with the dataset size and granularity of the space decomposition, (2) the distribution of aggregate trajectory information in the synthesized histogram accurately preserves the distribution of original histogram, and (3) the output has high accuracy in answering arbitrary spatial range queries.\",\"PeriodicalId\":365491,\"journal\":{\"name\":\"Proceedings of the 30th International Conference on Scientific and Statistical Database Management\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 30th International Conference on Scientific and Statistical Database Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3221269.3223039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3221269.3223039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Publishing spatial histograms under differential privacy
Studying trajectories of individuals has received growing interest. The aggregated movement behaviour of people provides important insights about their habits, interests, and lifestyles. Understanding and utilizing trajectory data is a crucial part of many applications such as location based services, urban planning, and traffic monitoring systems. Spatial histograms and spatial range queries are key components in such applications to efficiently store and answer queries on trajectory data. A spatial histogram maintains the sequentiality of location points in a trajectory by a strong sequential dependency among histogram cells. This dependency is an essential property in answering spatial range queries. However, the trajectories of individuals are unique and even aggregating them in spatial histograms cannot completely ensure an individual's privacy. A key technique to ensure privacy for data publishing ϵ-differential privacy as it provides a strong guarantee on an individual's provided data. Our work is the first that guarantees ϵ-differential privacy for spatial histograms on trajectories, while ensuring the sequentiality of trajectory data, i.e., its consistency. Consistency is key for any database and our proposed mechanism, PriSH, synthesizes a spatial histogram and ensures the consistency of published histogram with respect to the strong dependency constraint. In extensive experiments on real and synthetic datasets, we show that (1) PriSH is highly scalable with the dataset size and granularity of the space decomposition, (2) the distribution of aggregate trajectory information in the synthesized histogram accurately preserves the distribution of original histogram, and (3) the output has high accuracy in answering arbitrary spatial range queries.