协同模块化神经预测编码

M. Chetouani, B. Gas, J. Zarader
{"title":"协同模块化神经预测编码","authors":"M. Chetouani, B. Gas, J. Zarader","doi":"10.1109/NNSP.2003.1318063","DOIUrl":null,"url":null,"abstract":"Speech feature extraction is one of the most important stage in the speech recognition process. In this paper, we propose a new neural networks architecture called the cooperative modular neural predictive coding (CMNPC). It is based on the interaction of discriminant experts DFE-NPC (discriminant feature extraction) optimized for macro-classification by the help of a criterion: the modelisation error ratio (MER). We propose a theoretical validation of this model by linking The MER with a likelihood ratio. The performances of this architecture are estimated in a phoneme recognition task. The phonemes are extracted from the Darpa-Timit speech database. Comparisons with coding methods (LPC, MFCC, PLP) are presented. They put in obviousness an improvement of the recognition rates.","PeriodicalId":315958,"journal":{"name":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cooperative modular neural predictive coding\",\"authors\":\"M. Chetouani, B. Gas, J. Zarader\",\"doi\":\"10.1109/NNSP.2003.1318063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Speech feature extraction is one of the most important stage in the speech recognition process. In this paper, we propose a new neural networks architecture called the cooperative modular neural predictive coding (CMNPC). It is based on the interaction of discriminant experts DFE-NPC (discriminant feature extraction) optimized for macro-classification by the help of a criterion: the modelisation error ratio (MER). We propose a theoretical validation of this model by linking The MER with a likelihood ratio. The performances of this architecture are estimated in a phoneme recognition task. The phonemes are extracted from the Darpa-Timit speech database. Comparisons with coding methods (LPC, MFCC, PLP) are presented. They put in obviousness an improvement of the recognition rates.\",\"PeriodicalId\":315958,\"journal\":{\"name\":\"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NNSP.2003.1318063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2003.1318063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

语音特征提取是语音识别过程中最重要的阶段之一。本文提出了一种新的神经网络结构,称为协同模块化神经预测编码(CMNPC)。它基于判别专家DFE-NPC(判别特征提取)的相互作用,在建模错误率(MER)标准的帮助下,对宏观分类进行了优化。我们提出了一个理论验证的模型,通过链接的市场汇率与似然比。在音素识别任务中对该结构的性能进行了估计。这些音素是从Darpa-Timit语音数据库中提取的。并与LPC、MFCC、PLP等编码方法进行了比较。他们明显提高了识别率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cooperative modular neural predictive coding
Speech feature extraction is one of the most important stage in the speech recognition process. In this paper, we propose a new neural networks architecture called the cooperative modular neural predictive coding (CMNPC). It is based on the interaction of discriminant experts DFE-NPC (discriminant feature extraction) optimized for macro-classification by the help of a criterion: the modelisation error ratio (MER). We propose a theoretical validation of this model by linking The MER with a likelihood ratio. The performances of this architecture are estimated in a phoneme recognition task. The phonemes are extracted from the Darpa-Timit speech database. Comparisons with coding methods (LPC, MFCC, PLP) are presented. They put in obviousness an improvement of the recognition rates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信