{"title":"具有显著不确定性的一阶加时滞对象的控制设计与整定","authors":"Lijun Wang, Qing Li, Chao-nan Tong, Yixin Yin, Zhiqiang Gao, Qinling Zheng, Weicun Zhang","doi":"10.1109/ACC.2015.7172163","DOIUrl":null,"url":null,"abstract":"A novel active disturbance rejection control (ADRC) solution and a particular tuning method are presented for a class of time delay system (TDS) with uncertainty. First, the complicated process dynamics is modeled as a simple first order plus large time delay (FOPTD) plant, with the difference between the actual dynamics and its model treated as disturbances to be rejected. Then the reduced order linear extended state observer (RLESO) with input delay is proposed to estimate the time delay state and disturbance. It is shown how the time delay could be eliminated from the characteristic equation of the closed-loop system by manipulations of controller parameters. Secondly, the one parameter tuning (OPT) technique is developed where all controller parameters are made function of a single coefficient. In comparison with optimal proportional-integral-derivative (PID) controller and twice optimum controller (TOC), the simulation results show that the proposed method not only has better accuracy and faster response, but also ensures better robustness and adaptability against uncertain model parameters and external disturbances, especially for the plant with very large time delays.","PeriodicalId":223665,"journal":{"name":"2015 American Control Conference (ACC)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"On control design and tuning for first order plus time delay plants with significant uncertainties\",\"authors\":\"Lijun Wang, Qing Li, Chao-nan Tong, Yixin Yin, Zhiqiang Gao, Qinling Zheng, Weicun Zhang\",\"doi\":\"10.1109/ACC.2015.7172163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel active disturbance rejection control (ADRC) solution and a particular tuning method are presented for a class of time delay system (TDS) with uncertainty. First, the complicated process dynamics is modeled as a simple first order plus large time delay (FOPTD) plant, with the difference between the actual dynamics and its model treated as disturbances to be rejected. Then the reduced order linear extended state observer (RLESO) with input delay is proposed to estimate the time delay state and disturbance. It is shown how the time delay could be eliminated from the characteristic equation of the closed-loop system by manipulations of controller parameters. Secondly, the one parameter tuning (OPT) technique is developed where all controller parameters are made function of a single coefficient. In comparison with optimal proportional-integral-derivative (PID) controller and twice optimum controller (TOC), the simulation results show that the proposed method not only has better accuracy and faster response, but also ensures better robustness and adaptability against uncertain model parameters and external disturbances, especially for the plant with very large time delays.\",\"PeriodicalId\":223665,\"journal\":{\"name\":\"2015 American Control Conference (ACC)\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.2015.7172163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2015.7172163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On control design and tuning for first order plus time delay plants with significant uncertainties
A novel active disturbance rejection control (ADRC) solution and a particular tuning method are presented for a class of time delay system (TDS) with uncertainty. First, the complicated process dynamics is modeled as a simple first order plus large time delay (FOPTD) plant, with the difference between the actual dynamics and its model treated as disturbances to be rejected. Then the reduced order linear extended state observer (RLESO) with input delay is proposed to estimate the time delay state and disturbance. It is shown how the time delay could be eliminated from the characteristic equation of the closed-loop system by manipulations of controller parameters. Secondly, the one parameter tuning (OPT) technique is developed where all controller parameters are made function of a single coefficient. In comparison with optimal proportional-integral-derivative (PID) controller and twice optimum controller (TOC), the simulation results show that the proposed method not only has better accuracy and faster response, but also ensures better robustness and adaptability against uncertain model parameters and external disturbances, especially for the plant with very large time delays.