基于卡尔曼的层次状态估计协调:算法与分析

S. Zonouz, W. Sanders
{"title":"基于卡尔曼的层次状态估计协调:算法与分析","authors":"S. Zonouz, W. Sanders","doi":"10.1109/HICSS.2008.23","DOIUrl":null,"url":null,"abstract":"Hierarchical state estimation algorithms are usually employed in large-scale interconnected power systems, where state estimation usually involves very tedious communications and computations. This paper presents 1) a modified coordination technique that is based on Kalman filtering, derived from hierarchical state estimation; and 2) a time complexity analysis and experimental implementation to compare central, distributed, and hierarchical state estimation algorithms in terms of computation power and communication bandwidth requirements. Analytical and experimental results on the IEEE 118-bus test bed show that the presented approach, i.e., hierarchical Kalman filtering (HKF), needs about 34% communication bandwidth and O(1/N3) computation power in subsystems compared to central state estimation, while giving approximately the same level of estimation precision.","PeriodicalId":328874,"journal":{"name":"Proceedings of the 41st Annual Hawaii International Conference on System Sciences (HICSS 2008)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"A Kalman-Based Coordination for Hierarchical State Estimation:  Agorithm and Analysis\",\"authors\":\"S. Zonouz, W. Sanders\",\"doi\":\"10.1109/HICSS.2008.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hierarchical state estimation algorithms are usually employed in large-scale interconnected power systems, where state estimation usually involves very tedious communications and computations. This paper presents 1) a modified coordination technique that is based on Kalman filtering, derived from hierarchical state estimation; and 2) a time complexity analysis and experimental implementation to compare central, distributed, and hierarchical state estimation algorithms in terms of computation power and communication bandwidth requirements. Analytical and experimental results on the IEEE 118-bus test bed show that the presented approach, i.e., hierarchical Kalman filtering (HKF), needs about 34% communication bandwidth and O(1/N3) computation power in subsystems compared to central state estimation, while giving approximately the same level of estimation precision.\",\"PeriodicalId\":328874,\"journal\":{\"name\":\"Proceedings of the 41st Annual Hawaii International Conference on System Sciences (HICSS 2008)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 41st Annual Hawaii International Conference on System Sciences (HICSS 2008)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HICSS.2008.23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 41st Annual Hawaii International Conference on System Sciences (HICSS 2008)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HICSS.2008.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

在大规模互联电力系统中,通常采用分层状态估计算法,而状态估计通常涉及非常繁琐的通信和计算。本文提出了一种基于卡尔曼滤波的改进协调技术,该技术来源于层次状态估计;2)时间复杂度分析和实验实现,比较集中式、分布式和分层状态估计算法在计算能力和通信带宽需求方面的差异。在IEEE 118总线测试平台上的分析和实验结果表明,与中心状态估计相比,该方法(即层次卡尔曼滤波(HKF))只需要约34%的通信带宽和0 (1/N3)的子系统计算能力,而估计精度大致相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Kalman-Based Coordination for Hierarchical State Estimation:  Agorithm and Analysis
Hierarchical state estimation algorithms are usually employed in large-scale interconnected power systems, where state estimation usually involves very tedious communications and computations. This paper presents 1) a modified coordination technique that is based on Kalman filtering, derived from hierarchical state estimation; and 2) a time complexity analysis and experimental implementation to compare central, distributed, and hierarchical state estimation algorithms in terms of computation power and communication bandwidth requirements. Analytical and experimental results on the IEEE 118-bus test bed show that the presented approach, i.e., hierarchical Kalman filtering (HKF), needs about 34% communication bandwidth and O(1/N3) computation power in subsystems compared to central state estimation, while giving approximately the same level of estimation precision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信